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Abstract

We discuss output feedback control design with multiple performance specifications, each

measured in a weighted H∞-norm. The multidisk design problem consists in finding a sta-

bilizing output feedback controller which minimizes the different performance specifications

simultaneously using a worst case strategy. This is less conservative than existing approaches,

but difficult to solve algorithmically due to inherent nonsmoothness and nonconvexity. We

present a nonsmooth optimization method suited for the multidisk problem and more gener-

ally, for programs where the maximum of an infinite family of nonconvex maximum eigenvalue

functions is minimized. The method is shown to perform well on a control problem for a

helicopter at hover.

Keywords: H∞-synthesis, multi-channel design, multi-objective optimization, concurring per-
formance specifications, static output feedback, reduced-order synthesis, decentralized control,
PID, NP -hard problems, nonsmooth optimization, multidisk problems.

1 Introduction

Well designed feedback control systems are expected to respond favorably to an extended set of
design goals including robustness, good regulation against disturbances, desirable responses to
commands, and much else. Controller design therefore often involves a tradeoff between these
objectives in order to achieve a suitable compromise. In this paper we discuss a class of multi-
objective design problems, known as multidisk problems [11], where the performance channels are
all measured in a weighted H∞-norm, and where these performances are optimized simultaneously
using a worst case strategy. Mathematically, the multidisk design problem may be regarded as
minimizing the maximum of an infinite family of nonconvex maximum eigenvalue functions. The
multidisk problem is of great practical importance, but difficult to solve due to its semi-infinite
min-max structure. This explains why to date only a few heuristic approaches have been presented.
Since our new approach is expected to reduce conservatism in existing multi-channel strategies,
we comment on those subsequently.
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A first clearly conservative approach to multi-channel problems alleviates the difficulty by
setting up a single performance channel, using trade-offs between the conflicting performance
specifications. This may then be solved via traditional methods (LMIs and AREs) suited for
single channel design.

A second more sophisticated strategy uses the Q-parametrization of all stabilizing controllers
of a system. For the two-disk problem, this is elaborated in [21], the related strong stabilization
problem is considered in [28, 7]. Unfortunately, these approaches use the Youla parametrization
[29], which leads to feedback controllers with large state dimension, and moreover, makes it
impossible to add structural constraints, also known as control law specifications, on the controller.
We refer the reader to the work of Scherer [25] for an analysis of structured design problems for a
specific class of plants, and for a Q-parametrization approach to multi-objective control problems.
A thorough mathematical study of multidisk problems using tools from analytic function theory
is presented by Dym et al. in [11].

There exists yet another class of heuristic techniques for multidisk and multi-objective syn-
thesis problems, which uses state-space LMI formulations. Unfortunately, these techniques rely
on sufficient conditions, and are in general extremely conservative [18]. The reader is referred to
[26, 16, 10] to list just a few of these approaches, and to [4] for an extension to Linear Parameter-
Varying systems.

Here we attack the multi-objective design problem directly using techniques from nonsmooth
optimization. Such a strategy has already been proposed in [13], where the authors use the Q-
parametrization, which allows them to treat the multi-disk problem via convex analysis. In order
to avoid the inconveniences of the Q-parametrization, we follow a different and more flexible line
which allows us in particular to add structural constraints on the controller. The price to be
paid for this extension is that the optimization program is nonconvex and nonsmooth, so that
computed solutions are only locally optimal. Experiments nonetheless show that the advantage of
our local strategy is considerable. Note that a similar nonsmooth and nonconvex formulation of
H∞ synthesis is also investigated in [15]. There, the authors propose a global search strategy based
on a dynamical systems approach to determine solutions. In [1], we have combined direct search
techniques, often referred to as derivative-free methods, with nonsmooth oracles to obtain a first
valid approach to feedback control synthesis. These techniques have local convergence certificates
even in the presence of nonsmoothness, but are not efficient when the system order is large.

In this work we consider optimization of composite functions of the form

f(K) = max
i=1,...,N

‖Twi→zi(K)‖∞, (1)

where Twi→zi(K) are performance specifications used to probe the closed-loop system. Each Twi→zi

is a smooth operator defined on the open domain D of stabilizing feedback controllers K, with
values in the infinite dimensional space RH∞ of rational stable transfer matrix functions. In
consequence, the composite functions ‖ · ‖∞ ◦ Twi→zi are neither smooth nor convex, but their
structure can be exploited algorithmically. One central contribution of this work is a spectral
bundle algorithm suited for local optimization of functions of the form f , and more generally, for
semi-infinite nonconvex maximum eigenvalue functions with a related structure.

Notice that the max-H∞-function f(K) may be written as

f(K) = max
i=1,...,N

‖Twi→zi(K)‖∞ = max
ω∈R

σ (T (K, jω)) = max
ω∈R

λ1

(

T (K, jω)T (K, jω)H
)1/2

(2)
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where σ(M) and λ1(MMH) denote the maximum singular value respectively the maximum eigen-
value, and where T (K, jω) has a block structure with N blocks regrouping the different perfor-
mance channels:

T (K, jω) := diag(Tw1→z1(K, jω), . . . , TwN→zN (K, jω)) . (3)

In particular, T (K, jω)T (K, jω)H is then block diagonal with N blocks, so that f may be inter-
preted as an infinite maximum of maximum eigenvalue functions. This structure will be exploited
for the nonsmooth analysis of f . We mention that this particular structure of the objective f
already occurs in the simpler H∞-synthesis discussed in [3]. It will again be exploited for the
multidisk problem. In particular, computing subgradients in Section 3 will be based on the same
underlying regularity result [8], where the composite structure of f is the crucial element.

The structure of the paper is as follows. In Section 4 we present a convergence result for our
method and discuss practical aspects. A related approach is developed in [3] and [20]. In Section
2, we introduce the general setting of the multidisk H∞ synthesis problem and discuss a few
instances of practical interest. Tools and ingredients from nonsmooth analysis that are introduced
in Section 3. Nonsmooth descent techniques are developed in Section 4 and illustrated in Section
5 for a helicopter control problem.

Notation

Let R
n×m be the space of n×mmatrices, equipped with the corresponding scalar product 〈X, Y 〉 =

Tr(XTY ), where XT is the transpose of the matrix X, TrX its trace. For complex matrices, XH

denotes the transconjugate. For Hermitian or symmetric matrices, X ≻ Y means that X − Y
is positive definite, X � Y that X − Y is positive semi-definite. We write λ1 for the maximum
eigenvalue of a symmetric or Hermitian matrix and σ for the maximum singular value of a general
matrix. The Frobenius norm of a matrix M is ‖M‖F =

√

Tr (MHM). The symbol ⊗ denotes
the usual Kronecker product of matrices. For a finite set I ⊂ N, diag

i∈I
Ai denotes a block diagonal

matrix with blocks Ai arranged on the main diagonal. We shall use notions from nonsmooth
analysis covered by [8]. In particular, for a locally Lipschitz function f : R

n → R, ∂f(x) denotes
its Clarke subdifferential or generalized gradient at x, f ′(x; d) the Clarke directional derivative.
The convex hull of vectors v1, . . . , vq is denoted co {v1, . . . , vq}.

2 Multidisk H∞ synthesis

We consider a plant P in state-space form

P (s) :

[

ẋ
y

]

=

[

A B
C D

] [

x
u

]

(4)

together with N concurring performance specifications, represented as a family of plants P i(s)
described in state-space form as

P i(s) :





ẋi

zi

yi



 =





Ai Bi
1 Bi

2

Ci
1 Di

11 Di
12

Ci
2 Di

21 Di
22









xi

wi

ui



 , i = 1, . . . , N, (5)
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where xi ∈ R
ni

is the state vector of P i, ui ∈ R
m2 the vector of control inputs, wi ∈ R

mi
1 the

vector of exogenous inputs, yi ∈ R
p2 the vector of measurements and zi ∈ R

pi
1 the controlled

or performance vector associated with the ith input wi. The performance channels typically
incorporate frequency filters which create new states, so that the matrices Ai contain the original
system matrices A, etc. Without loss, it is assumed throughout that D = 0 and Di

22 = 0 for all i.
The general multidisk synthesis problem consists in designing a dynamic output feedback

controller ui = K(s)yi for the plant family in (5) with the following properties:

• Internal stability: K(s) stabilizes the original plant P (s) in closed-loop.

• Performance: Among all stabilizing controllers, K minimizes the worst case performance
function f(K) = max

i=1,...,N
‖Twi→zi(K)‖∞.

We assume that the controller K has the following frequency domain representation:

K(s) = CK(sI −AK)−1BK +DK , AK ∈ R
k×k, (6)

where k is the order of the controller, and where the case k = 0 of a static controller K(s) = DK

is included.
Often practical considerations impose additional structural constraints on the controller K.

For instance it may be desired to design low-order controllers (0 ≤ k ≪ n) or controllers with
prescribed-pattern, sparse controllers, decentralized controllers, observed-based controllers, PID
control structures, synthesis on a finite set of transfer functions, and much else. Formally, the
synthesis problem may then be represented as

minimize f(K) = max
i=1,...,N

‖Twi→zi(K)‖∞

subject to K stabilizes P (s)
K ∈ K

(7)

where K ∈ K represents a structural constraint on the controller (6). In most cases, this takes
the more amenable form of an equality constraint g(K) = 0. A typical example will be given at
the end of section 3.

Remark. Our approach needs initial controllers K in the set D of closed-loop asymptotically
stabilizing controllers, because the different H∞-norm terms must be well-defined. The initial-
ization problem is therefore of particular interest. It can be handled by solving a special H∞

synthesis problem, by selecting appropriate data in (5). The reader is referred to [1] for more
details. There are numerous alternatives, see for instance [9] and references therein. �

A related problem is to maintain stability K ∈ D in (7) during the optimization of K. As-
suming K static for simplicity, this may be achieved indirectly by including a stabilizing channel
‖TwN+1→zN+1(K)‖∞, where TwN+1→zN+1(K) := ρ(sI − (A + BKC))−1 for some small ρ > 0. In-
cluded among the performance specifications i = 1, . . . , N , this new term guarantees closed-loop
stabilization of P (s). Adding the stabilizing channel is convenient, because the constraint K ∈ D
is not a constraint in the usual sense of constrained optimization. This is because D is an open set,
and the objective function is not defined outside D. This is why we prefer an indirect approach
to this constraint via the stabilizing channel.
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We are therefore led to replace problem (7) by the more amenable program

minimize f(K) = max
i=1,...,N

‖Twi→zi(K)‖∞

subject to K ∈ K
(8)

where the stabilizing channel is included among the list. This problem becomes unconstrained as
soon as the structural constraint can be eliminated.

3 Subdifferential of the max-H∞ mapping

The success of our algorithmic constructions hinges on the following central fact.

Proposition 3.1 Every closed-loop H∞-mapping of the form ‖ · ‖∞ ◦ Tw→z defined on the set D
of asymptotically stabilizing controllers K ∈ R

(m2+k)×(p2+k) is regular in the sense of Clarke [8].
Consequently, the same is true for the function f(K) = maxi=1,...,N ‖Twi→zi(K)‖∞ defined on D.

Proof: Note that ‖ · ‖∞ is continuous and convex on the space H∞ of stable transfer functions.
Since Tw→z is differentiable on the open subset D ⊂ R

(m2+k)×(p2+k), it follows from [8] that the
composite function ‖ · ‖∞ ◦Tw→z is regular. Finally, since f is a finite maximum of such functions,
the same result is true for f . �

This result has important consequences for control problems involving H∞ performances, be-
cause calculus rules for generalized gradients simplify. As we shall see, it allows us to compute
the Clarke subdifferential of the max-H∞ map f = max ◦ (‖ · ‖∞ ◦ Tw1→z1, . . . , ‖ · ‖∞ ◦ TwN→zN ).

In the sequel, the focus is on static feedback controllers, k = 0. Dynamic output feedback
design is easily converted into static output feedback design through prior dynamic augmentation
of the plant:

K →

[

AK BK

CK DK

]

, Ai →

[

Ai 0
0 0k

]

Bi
1 →

[

Bi
1

0

]

, Ci
1 → [Ci

1 0 ]

Bi
2 →

[

0 Bi
2

Ik 0

]

, Ci
2 →

[

0 Ik
Ci

2 0

]

, Di
12 → [ 0 Di

12 ] , Di
21 →

[

0
Di

21

]

.

(9)

We refer the reader to [1] for further details. For static controllers, we will need the following
notations:

Ai(K) := Ai +Bi
2KC

i
2, B

i(K) := Bi
1 +Bi

2KD
i
21, C

i(K) := Ci
1 +Di

12KC
i
2,

Di(K) := Di
11 +Di

12KD
i
21 ,

(10)

for closed-loop data. The computation of generalized subgradients greatly simplifies if we introduce
the following definitions:

[

Twi→zi(K, s) Gi
12(K, s)

Gi
21(K, s) ⋆

]

:=

[

Ci(K)
Ci

2

]

(sI −Ai(K))
−1

[Bi(K) Bi
2 ] +

[

Di(K) Di
12

Di
21 ⋆

]

.

We are almost ready to characterize the Clarke subdifferential of the composite function
f(K) = maxi=1,...,N ‖Twi→zi(K)‖∞. Let us introduce two more notations. We let

I(K) = {i ∈ {1, . . . , N} : ‖Twi→zi(K)‖∞ = f(K)}, (11)
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the set of active indices at a given K. Moreover, for each i ∈ I(K), we consider the set of active
frequencies

Ωi(K) = {ω ∈ [0,+∞] : σ (Twi→zi(K, jω)) = f(K)}.

We assume throughout that Ωi(K) is a finite set, indexed as

Ωi(K) = {ωi
ν : ν = 1, . . . , pi}, i ∈ I(K). (12)

The set of all active frequencies is denotes as Ω(K).

Theorem 3.2 Assume that the controller K is static, k = 0, and stabilizes P (s) in (4), that
is, K ∈ D. With the notations introduced in (11) and (12), let Qi

ν be a matrix whose columns
form an orthonormal basis of the eigenspace of Twi→zi(K, jωi

ν)Twi→zi(K, jωi
ν)

H associated with the
largest eigenvalue λ1

(

Twi→zi(K, jωi
ν)Twi→zi(K, jωi

ν)
H

)

= σ(Twi→zi(K, jωi
ν))

2. Then, the Clarke
subdifferential of the mapping f at K ∈ D is the compact and convex set ∂f(K) = {ΦY : Y ∈
S(K)}, where

ΦY = f(K)−1
∑

i∈I(K)

∑

ν=1,...,pi

Re
{

Gi
21(K, jω

i
ν)Twi→zi(K, jωi

ν)
HQi

νY
i
ν (Qi

ν)
HGi

12(K, jω
i
ν)

}T
, (13)

and
S(K) = {Y = (Y i

ν )i∈I(K),ν=1,...,pi : Y i
ν = (Y i

ν )H � 0,
∑

i∈I(K)

∑

ν=1,...,pi

Tr Y i
ν = 1}. (14)

Proof: Let G ∈ H∞ be a nonzero stable transfer function. Suppose its H∞-norm is attained at
the finite set of frequencies ω1, . . . , ωp, possibly including ∞. Then the subgradients of ‖ · ‖∞ at
G are linear functionals on H∞ of the form

φY (H) = ‖G‖−1
∞

p
∑

ν=1

Re Tr G(jων)
HQνYνQ

H
ν H(jων),

where the columns of the matrix Qν are an orthonormal basis of the eigenspace of G(jων)G(jων)
H

associated with its largest eigenvalue ‖G‖2
∞, and where Yν � 0,

∑p
ν=1 Tr(Yν) = 1.

Next consider a composite function like ‖ · ‖∞ ◦ Tw→z. By Proposition 3.1, this functions
is regular, and the Clarke subdifferential is therefore obtained using the chain rule. In other
words, ∂ (‖ · ‖∞ ◦ Tw→z) (K) = T ′

w→z(K)∗∂‖ · ‖∞ (Tw→z(K)). After computing the adjoint of the
derivative of Tw→z atK, mapping the dual ofH∞ into R

(m2+k)×(p2+k), we find that the subgradients
of ‖ · ‖∞ ◦ Tw→z at K are precisely of the form

ΦY = ‖Tw→z(K)‖−1
∞

p
∑

ν=1

Re
{

G21(K, jων)Tw→z(K, jων)
HQνYνQ

H
ν G12(K, jων)

}T
,

indexed by Yν � 0,
∑p

ν=1 Tr(Yν) = 1. Notice that ΦY ∈ R
(m2+k)×(p2+k) now acts on vectors K of

that space via the standard scalar product 〈K,ΦY 〉 = Tr(KT ΦY ).
Next, according to Clarke [8, Proposition 2.3.12], the subdifferential of the finite maximum

f(K) = maxi∈I(K) ‖Twi→zi(K)‖∞ is obtained through

∂f(K) = co {∂(‖.‖∞ ◦ Twi→zi)(K) : i ∈ I(K)} .
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Combining with the above this leads to the set of subgradients

ΦY,τ = f(K)−1
∑

i∈I(K)

τi
∑

ν=1,...,pi

Re
{

Gi
21(K, jω

i
ν)Twi→zi(K, jωi

ν)
HQi

νY
i
ν (Qi

ν)
HGi

12(K, jω
i
ν)

}T
,

(15)
indexed by

∑

i∈I(K) τi = 1, τi ≥ 0 and
∑

ν=1,...,pi Tr Y i
ν = 1, Y i

ν � 0 . Note that (15) is equivalent
to

ΦY,τ = f(K)−1
∑

i∈I(K)

∑

ν=1,...,pi

Re
{

Gi
21(K, jω

i
ν)Twi→zi(K, jωi

ν)
HQi

ν τiY
i
ν (Qi

ν)
HGi

12(K, jω
i
ν)

}T
.

(16)
From the definitions of the τi and the Y i

ν , we have

Tr
∑

i∈I(K)

∑

ν=1,...,pi

τiY
i
ν =

∑

i∈I(K)

τi Tr
∑

ν=1,...,pi

Y i
ν =

∑

i∈I(K)

τi = 1 .

Therefore, redefining τiY
i
ν as Y i

ν , immediately gives (13) where the Y are as in (14), and where we
may now drop the reference to τ in the notation ΦY . �

Remark. Under the assumption that the set Ω(K) of active frequencies is finite, a subset of
the set ∂‖ · ‖∞(K) of all subgradients of the H∞-norm has first been presented in [24]. The full
characterization of ∂‖ · ‖∞(K), is given in [1, 3], and the formula for a composite function ∂f(K)
with N = 1 follows by computing the adjoint T ′

w→z(K)∗. The extension to general finite N above
uses the max formula and is therefore a straightforward extension of the case N = 1.

Example 1. Strongly structured controllers. We combine Theorem 3.2 with a chain rule to
obtain the subdifferential of the max-H∞ operator for specially structured controllers, including
PID, lead-lag, fixed-pattern, decentralized, observer-based, companion form, and much else. This
can be formalized as follows.

Assume, an affine parametrization of the state-space data of the controller is known:

K = K0 + L diag(κ)R

where κ is a vector of free parameters to be designed. Then, using chain rules for subdif-
ferentials of regular functions [8], the subdifferential ∂g(κ) of the max-H∞ function g(κ) :=
f (K0 + L diag(κ)R) is obtained as the set of subgradients

ΨY = diag(LT ΦYR
T ) , (17)

where ΦY is described in (13). In the notation above, we have used the convention that the diag
operation applied to a vector κ generates a diagonal matrix with κ on the main diagonal, whereas
the same operation applied to a matrix vectorizes the main diagonal. �

Example 2. Decentralized PID controllers. We specialize to the case of decentralized PID
controllers, a structure often used in industrial applications. This class of structured controllers
is well-defined for m×m square plants and can be described in the form:

K(s) = diag

(

K1
P +

K1
I

s
+

sK1
D

1 + τ 1s
, . . . , Km

P +
Km

I

s
+

sKm
D

1 + τms

)

.
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Introduce parameter vectors

κτ := ( 1
τ1
, . . . , 1

τm
),

κD := (−
K1

D

τ1
, . . . ,−

Km
D

τm
),

κI := (K1
I , . . . , K

m
I ),

κP := (K1
P +

K1
D

τ1
, . . . , Km

P +
Km

D

τm
),

then an affine state-space parametrization of decentralized PID controllers can be written as:

[

AK BK

CK DK

]

:=

[

Im ⊗ 02,2 Im ⊗

[

1
0

]

Im ⊗ 02,1 Im ⊗ 0

]

+ L diag(κτ , κD, κI , κP ) R ,

where

L :=

[

Im ⊗

[

0
−1

]

Im ⊗

[

0
1

]

0 0

Im 0 Im Im

]

, R :=

[

Im ⊗

[

0
1

]

0 Im ⊗

[

1
0

]

0

0 Im 0 Im

]T

, (18)

and where ⊗ denotes the standard Kronecker product of matrices. Then ∂g(κ) is obtained by
combining (17) and (18). �

4 Nonsmooth descent techniques

With complete knowledge of the generalized subdifferential, several nonsmooth techniques can
be derived for the determination of local solutions to multidisk H∞ design problems. Different
variants along with their convergence theory are discussed in [20, 1]. In the sequel, we briefly
discuss two strategies. The second is supported by a sound convergence theory and has been used
in our numerical experiments of Section 5.

4.1 Steepest descent

A straightforward idea to compute locally optimal solutions to multidisk synthesis is the steepest
descent algorithm. Following Clarke [8, Theorem 6.2.2 p. 231], and leaving apart structural
constraints on the controller, K is critical for problem (8) if and only if 0 ∈ ∂f(K), where ∂f(K)
is described in (13). It therefore appears natural to consider the program

HK := −
ΦY

‖ΦY ‖F

, ΦY := argmin{‖ΦY ‖F : Y ∈ S(K)} ,

which either shows that 0 ∈ ∂f(K) or produces the direction HK of steepest descent at K when
0 /∈ ∂f(K). Clearly, the nature of the set S(K) in (14) entails that direction HK can be computed
via standard SDP codes or even using classical convex quadratic programming (QP) when singular
values are simple, a fact that we discuss further in the sequel. The steepest descent algorithm
requires a line search along the direction of steepest descent computed by SDP, and these two steps
are repeated until 0 ∈ ∂f(K) is approximately satisfied. Unfortunately, this simple technique may
fail to converge to a critical point due to the nonsmoothness of f(K). Failure occurs because the
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search direction HK at K does not depend continuously on K. This causes iterates to converge to
so-called dead points [1], which are not critical and therefore no valid solution of the optimization
program (7) respectively (8). A more elaborate technique must therefore be found. This has been
initiated in a general context in [1]. In the next section, we briefly discuss an attractive variant
for which convergence to local solutions can be established. The reader is referred to [20, 1] for
related material.

4.2 Convergent nonsmooth descent method

Given a static controller K ∈ D, where D ⊂ R
m2×p2 is the set of closed-loop stabilizing controllers

for (4), introduce the function

f(K,ω) := σ (T (K, jω)) = max
i=1,...,N

σ(Twi→zi(K, jω)) ,

then f(K) = maxω∈R f(K,ω), and minimization of f may be interpreted as a semi-infinite min-
imization problem involving the infinite family f(·, ω). At a given K, recall that Ω(K) is the
set of active frequencies at K. Clearly, f(K,ω) ≤ f(K) for all ω ∈ R and f(K,ω) = f(K) for
ω ∈ Ω(K). As a consequence of Theorem 3.2, the subdifferential of the function f(K,ω) at K is
defined as the set of subgradients

ΦY,ω = f(K,ω)−1
∑

i∈Iω(K)

Re
{

Gi
21(K, jω)Twi→zi(K, jω)HQi

ωY
i
ω(Qi

ω)HGi
12(K, jω)

}T
,

where Iω(K) is the index set of active specifications at K and ω

Iω(K) := {i ∈ {1, . . . , N} : σ(Twi→zi(K, jω)) = f(K,ω)} ,

and T (K, s) is defined in (3). As before we have
∑

i∈Iω(K)

Tr Y i
ω = 1 , Y i

ω = (Y i
ω)H � 0 .

For simplicity of the exposition we introduce the notation

Yω(K) :=

{

Yω := diag
i∈Iω(K)

Y i
ω : Tr Yω = 1, Yω = (Yω)H � 0

}

.

During the following, we consider finite extensions Ωe(K) of the set of active frequencies Ω(K).
For any such set Ωe(K), and for some fixed δ > 0, we introduce the optimality function

θe(K) := inf
H∈Rm2×p2

sup
ω∈Ωe(K)

sup
Yω∈Yω(K)

−f(K) + f(K,ω) + 〈ΦY,ω, H〉 +
1

2
δ‖H‖2

F . (19)

Note that the optimality function θe is a first-order model for the original problem augmented by
a second-order term 1

2
δ‖H‖2

F . When Ωe(K) = Ω(K), we use the notation θ(K). Since Ω(K) ⊂
Ωe(K) for any extension, we have θ(K) ≤ θe(K).

As we shall see, the name optimality function for θ(K) and θe(K) is justified by the fact that
θe(K) ≤ 0 for all K, while θe(K) = 0 implies that K is a critical point of f , independently of the
extension used. Note that this type of optimality measure has first been introduced by E. Polak
[23] for finite and infinite families of smooth functions.
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Proposition 4.1 The following dual formula is valid:

θe(K) = sup
P

ω∈Ωe(K)

τω=1, τω≥0

sup
Yω∈Yω(K)

∑

ω∈Ωe(K)

τω(f(K,ω) − f(K)) −
1

2δ
‖

∑

ω∈Ωe(K)

τωΦY,ω‖
2
F . (20)

A consequence is that θe(K) can be computed via SDP.

Proof. To begin with, we convert the inner double supremum in (19) into a supremum over the
simplex

∑

ω∈Ωe(K) τω = 1, τω ≥ 0. This operation leaves the function θe unchanged. We then have
that

θe(K) = inf
H∈Rm2×p2

sup
P

ω∈Ωe(K)

τω=1, τω≥0

sup
Yω∈Yω(K)

{−f(K)+

∑

ω∈Ωe(K)

τωf(K,ω) +
∑

ω∈Ωe(K)

τω〈ΦY,ω, H〉 + δ
2
‖H‖2

F } .

Next, invoking Fenchel duality, it is possible to interchange the inner double supremum with the
outer infimum; (see also [23, Corollary 5.5.3], where this is called the discrete minimax theorem).
The now inner infimum with respect to H becomes unconstrained and can be computed explicitly.
We obtain the solution

H(K) := −
1

δ

∑

ω∈Ωe(K)

τωΦY,ω . (21)

Substituting this expression back into (19) yields the desired dual expression for θe(K) given in
(20).

Finally, using the change of variable Zω := τωYω, we readily get

Zω := diag
i∈Iω(K)

Z i
ω with Tr (Zω) = τω, Zω = ZH

ω � 0 . (22)

Defining

ΦZ,ω := f(K,ω)−1
∑

i∈Iω(K)

Re
{

Gi
21(K, jω)Twi→zi(K, jω)HQi

ωZ
i
ω(Qi

ω)HGi
12(K, jω)

}T
,

and using (22) in the dual form (20) yields an SDP formulation for θe(K):

θe(K) := sup
P

ω∈Ωe(K)

Tr Zω=1, Zω�0

∑

ω∈Ωe(K)

TrZω (f(K,ω) − f(K)) −
1

2δ
‖

∑

ω∈Ωe(K)

ΦZ,ω‖
2
F . (23)

�

Since f(K,ω) ≤ f(K) for all ω, we infer θe(K) ≤ 0. Using the dual formula (20), one can
see that equality θe(K) = 0 can only occur when τω = 0 for all ω ∈ Ωe(K) \ Ω(K). But then
θe(K) = 0 comes down to

0 = sup
Yω∈Yω(K)

−
1

2δ
‖

∑

ω∈Ω(K)

τωΦY,ω‖
2
F (24)

10



for certain τω ≥ 0, ω ∈ Ω(K), summing up to one, independently of the extension Ωe(K) of Ω(K).
By the definition of ΦY,ω, equality (24) is equivalent to

∑

ω∈Ω(K)

τωf(K)−1
∑

i∈Iω(K)

Re
{

Gi
21(K, jω)Twi→zi(K, jω)HQi

ωY
i
ω(Qi

ω)HGi
12(K, jω)

}T
= 0 ,

which by Theorem 3.2 is nothing else but the condition 0 ∈ ∂f(K) since Iω(K) coincides with
I(K) in that case. To sum up our reasoning, we have the following

Theorem 4.2 A controller K ∈ D is critical for program (8) if and only if θe(K) = 0, where
θe(K) may be computed with respect to any finite extension Ωe(K) of the set of active frequencies
Ω(K). Whenever θe(K) < 0, direction (21), where τω, Yω are solutions to the dual program (20),
is a descent direction of f(K) at K.

The statement about criticality follows from the previous arguments. The fact that H(K) is
a descent direction as soon as θe(K) < 0 is a consequence of the following:

Lemma 4.3 When θe(K) < 0, then H(K) in (21) is a qualified descent direction of f at K in
the sense that

f ′ (K;H(K)) ≤ θe(K) −
δ

2
‖H(K)‖2 < 0, (25)

where f ′(K;H) denotes the Clarke directional derivative of f at K in direction H.

Proof. By the definition of H(K) we have

θe(K) = sup
P

ω∈Ωe(K)

τω=1, τω≥0

sup
Yω∈Yω(K)







−f(K) +
∑

ω∈Ωe(K)

τωf(K,ω) +
∑

ω∈Ωe(K)

τω〈ΦY,ω, H(K)〉 +
δ

2
‖H(K)‖2

F







.

Since Ω(K) ⊂ Ωe(K), restricting the first supremum to the vertices of the simplex defined by
Ω(K) yields

θe(K) −
1

2
δ‖H(K)‖2

F ≥ sup
ω∈Ω(K)

sup
Yω∈Yω(K)

〈ΦY,ω, H(K)〉

= sup{〈ΦY , H(K)〉 : ΦY ∈ ∂f(K)}

= f ′ (K;H(K)) .

Here we use the fact that for ω ∈ Ω(K), the terms −f(K) + f(K,ω) vanish. �

The above analysis suggests the following nonsmooth descent algorithm for the minimization
of f(K), where 0 < α < 1, 0 < β < 1 and δ > 0 are fixed parameters.

11



Nonsmooth descent algorithm for multidisk H∞ synthesis

1. Initialization. Find a controller K which stabilizes the original plant P .
2. Generate frequencies. Given the current K, compute f(K) and obtain

active frequencies Ω(K). Select a finite enriched set of frequencies Ωe(K)
containing Ω(K), as outlined in Section 4.4.

3. Descent direction. Compute θe(K) and the solution (τ, Y ) of SDP (20).
If θe(K) = 0, stop, because 0 ∈ ∂f(K). Otherwise compute descent direction
H(K) given in (21).

4. Line search. Find largest t = βk such that f(K + tH(K)) ≤ f(K) + tαθe(K)
and such that K + tH(K) remains stabilizing.

5. Step. Replace K by K + tH(K), increase iteration counter by one, and go back
to step 2.

Remark. Notice here that the line search in step 4 is successful since by Lemma 4.3,

lim
t→0

1

t
(f (K + tH(K)) − f(K)) = f ′ (K;H(K)) ≤ θe(K) −

1

2
δ‖H(K)‖2

F < θe(K) < 0.

Given 0 < α < 1 and θe(K) < 0, we have θe(K) < αθe(K), and the set of admissible t in the
line search of step 4 therefore contains a nonempty open interval (0, t). Locating the largest
t = βk ∈ (0, t) is therefore a finite procedure.

Remark. A tractable SDP formulation for computing θe(K) is presented in (23). When
singular values at selected frequencies are simple, i.e., σ (T (K, jω)) has multiplicity 1 for every
ω ∈ Ωe(K), then each set Iω(K) must be singleton {i(ω)}, and each basis Qi

ω reduces to a single

normalized vector q
i(ω)
ω . It follows that Zω is a (real) scalar zω, and the SDP (23) simplifies to a

convex QP:

θe(K) := sup
P

ω∈Ωe(K)

zω=1, zω�0

∑

ω∈Ωe(K)

zω (f(K,ω)− f(K))

− 1
2δ
‖

∑

ω∈Ωe(K)

zωf(K,ω)−1Re
{

G
i(ω)
21 (K, jω)Twi(ω)→zi(ω)(K, jω)Hq

i(ω)
ω (q

i(ω)
ω )HG

i(ω)
12 (ω)(K, jω)

}T

‖2
F .

(26)
Because this situation appears to be the rule in practice, and because convex QP codes signifi-

cantly outperform SDP codes in terms of efficiency, this is very beneficial to our descent algorithms
for solving multidisk H∞ problems.

4.3 Convergence

The question which remains to be resolved is how to choose the frequency set Ωe(K) in step 2
of the algorithm in order to achieve convergence of the method. A crucial observation is that
the optimality function θ(K) may fail to behave continuously, as the sequence of iterates Kn

approaches a limit point K∗. This is due to the fact that typically Ω(K∗) will contain frequencies
which are not limit points of sequences of frequencies in Ω(Kn). This in turn is just another way
to express the fact that the steepest descent direction behaves discontinuously.

12



In order to force continuity of the optimality function, one has to use extended sets Ωe(Kn).
The most general approach to assure convergence is to use a sequence of meshes Ωh ⊂ [0,∞] with
mesh size h > 0, in order to approximate the infinite maximum. For instance, assure that Ωh is
finite, Ωh ⊂ Ωh′ for h > h′, and ∪h>0Ωh dense in [0,∞]. Assume that in step 2 of the algorithm,
Ωe(K) = Ω(K) ∪ Ω1/n, where n is the actual value of the iteration counter. This simply ensures
that as Kn → K∗, the set Ω(K∗) is contained in the set of accumulation points of the sequence
Ωe(Kn) ⊃ Ω1/n.

Unfortunately, this is not a practically useful procedure, as we get subsets Ωe(K) of increasingly
large size. Our experiments show that, on the contrary, it is possible to limit the size of the sets
Ωe(K) throughout the process. One naturally wonders how this may be justified theoretically. We
show that this is indeed possible if some mild extra assumptions on the limit point K∗ are made.

Let us assume thatK∗ is a limit point of the sequence Kn of iterates generated by the algorithm.
Assume as before that Ωi

ν is finite for every i ∈ I(K∗), so that the set of active frequencies
Ω(K∗) = {ω∗

1, . . . , ω
∗
p} is finite. Moreover, assume for the time being that the maximum eigenvalues

λ1

(

Twi→zi(K∗, jω)Twi→zi(K∗, jω)H
)

at ω = ω∗
ν have all multiplicity 1, so that the function f(K,ω)

is smooth in a neighborhood of each (K∗, ω∗
ν) [22]. Now assume that

(H) fω(K∗, ω∗
ν) = 0, and fωω(K∗, ω∗

ν) ≺ 0 for ν = 1, . . . , p.

Notice that the left hand condition is the first-order necessary optimality condition for a peak
of the curve ω 7→ f(K∗, ω) at each ω∗

ν , while the second condition is the sufficient second order
optimality condition, which is slightly conservative. Indeed, the necessary second order condition
would only give fωω(K∗, ω∗

ν) � 0, but this slight investment is certainly realistic. Now we may
invoke the implicit function theorem and deduce that there exist p functions ων(K), ν = 1, . . . , p,
of class C1 defined in a neighborhood of K∗ such that ων(K

∗) = ω∗
ν and fω (K,ων(K)) = 0 in a

neighborhood of K∗. Since fωω(K,ων(K)) ≺ 0 for ν = 1, . . . , p in a neighborhood of K∗, and since
the ω∗

1, . . . , ω
∗
p are the only frequencies where the maximum f(K∗) is attained, it follows that in

a neighborhood of K∗, the problem of minimizing f is equivalent to the program

min
K∈D

max
ν=1,...,p

f (K,ων(K)) .

In particular, Ω(K) ⊂ {ω1(K), . . . , ωp(K)} in a neighborhood of K∗, even though the inclu-
sion may be strict at K 6= K∗. We refer to those local maxima ων(K) of f(K, ·) for which
f (K,ων(K)) < f(K) as secondary peaks, while those in Ω(K) are called peaks. Due to hypothe-
sis (H), in a neighborhood of K∗, there can be at most p − 1 secondary peaks, because the only
local maxima are the ων(K), and at least one of them must be peak.

Now for a finite maximum of smooth functions, Fi(K) = f (K,ωi(K)), the optimality function
(19) behaves continuously if defined as Ωe(K) = {ω1(K), . . . , ωp(K)} ⊇ Ω(K) in a neighborhood
of K∗. In conclusion, we have the following

Theorem 4.4 Let K∗ be an accumulation point of the sequence Kn generated by the nonsmooth
algorithm. Suppose that hypothesis (H) is satisfied at K∗. Suppose that θe(K) is computed using
the p primary and secondary peaks, that is, Ωe(K) = {ω1(K), . . . , ωp(K)}. Then K∗ is a critical
point of f .

Proof. As θe now varies continuously with K, so does the descent direction H(K) in (21). Sup-
pose then we had θ(K∗) < 0. Then a descent step H(K∗) away from K∗ is possible, and descent
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is at least f (K∗ + t(K∗)H(K∗)) ≤ f(K∗) +αt(K∗)θe(K
∗), as shown by the line search procedure

and Lemma 4.3. Here t(K) is the step size function defined by the line search in step 4 of the
algorithm. We claim that the function K → t(K)θe(K) is semicontinuous at K∗ in the weak
sense that there exists a neighborhood N∗ of K∗ such that t(K)θe(K) ≤ ρt(K∗)θ(K∗) for all
K ∈ N∗ and some fixed 0 < ρ < 1. Accepting that this is the case, we argue as follows. Step 4 of
the algorithm tells us that for Kn ∈ N∗, the value f(Kn+1) is below f(Kn) by a gap of at least
αt(Kn)θe(Kn) ≤ ραt(K∗)θ(K∗) < 0. Since this gap occurs infinitely often, f must be unbounded
below, a contradiction. But notice that semicontinuity of t(K)θe(K) in the sense indicated is clear
from the continuity of θe and from the definition of the stepsize rule. �

Notice that hypothesis (H) is mild and sometimes referred to as the standard assumptions in
semi-infinite optimization (see e.g. [12]).

4.4 Extended sets of frequencies

Multidisk H∞ synthesis requires repeated computations ofH∞ norms. This is done quite efficiently
using the bisection algorithm [5, 6]. As a byproduct, this algorithm returns estimates of the
primary and secondary peak frequencies ω ∈ {ω1(K), . . . , ωp(K)}. In our numerical experiments,
we have observed that it is generally beneficial to consider an extended set of frequencies including
the primary and secondary peak set Ωe(K) ⊇ Ω(K). This renders the algorithm less dependent
on the accuracy to which peak frequencies are computed, and the resulting descent direction (21)
often behaves more smoothly. Moreover, using a larger Ωe(K) allows to capture more information
on the frequency curve ω 7→ max

i=1,...,N
σ(Twi→zi(K, jω)), so that better steps are performed. In our

numerical testing, we have used the following simple scheme:

Selection of additional frequencies

1. Compute f(K) via the bisection algorithm and detect Ω(K).
2. Guess the number p of active peaks in the limit K∗ and add

the p− |Ω(K)| largest secondary peaks.
3. Define a cut-off level γc := β f(K) where β ∈ (0, 1).
4. Determine nearly active models using γc. Model with index i

is retained for frequency gridding whenever ‖Twi→zi(K)‖∞ > γc.
5. For each nearly active model i, grid those frequency intervals

where σ(Twi→zi(K, jω)) > γc. Keep track of the p largest
(primary and secondary) peaks to assure that Ωe(K) contains
{ω1(K), . . . , ωp(K)} and depends continuously on this set.

Note that secondary peaks in step 2 as well as the intervals in step 5 can be located via the
bisection algorithm in [5]. The accuracy of primary peaks is very high, while secondary peaks are
usually obtained with slightly less precision. This does not present a serious problem in practice,
because precision increases as soon as the ων(K) get closer to becoming active.

Both linearly or logarithmically spaced gridding may be used and we are not strict yet as to
what is a better choice in a given application. Typical values of β are β = 0.8; 0.9. In practice, if
Ωe(K) happens to be too large a set, we truncate to retain the first 300 frequencies with leading
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singular values. With this simple rule, the computational effort in generating descent directions
is kept under control and hardly exceeds a second in most applications.

To conclude this section, let us argue why the proposed method of selecting Ωe(K) does not
put the convergence result Theorem 4.4 at stake, as long as the choice of the gridding in the zone
where singular values exceed γc is continuous.

Theorem 4.5 Let the sequence Kn be generated by the nonsmooth algorithm, and suppose K∗

is one of its accumulation points for which the hypotheses of Theorem 4.4 are satisfied. Suppose
the criticality measure θe(K) is computed on the basis of an extended set of frequencies Ωe(K)
obtained via the above construction. Then K∗ is a critical point of f .

Proof. Consider a convergent subsequence Kn → K∗, n ∈ N . Since the number of models i is
finite, we may select a subsequence n ∈ N ′ such that the same i are nearly active in N ′. Since γc

depends continuously on K, the region of nearly active frequencies ω with σ (Twi→zi(K, jω)) > γc

also depends continuously on K. Since the gridding operator in step 5 depends continuously
on the set {ω1(K), . . . , ωp(K)}, we see that Ωe(K) also depends continuously on K. Then the
stepsize t(K) has the same properties as in Theorem 4.4, that is, t(K)θe(K) is semi continuous
in the weak sense of Theorem 4.4, and the convergence argument remains essentially the same. �

Guessing the correct number of peaks p at K∗ may appear difficult in practice. However, the
outlined procedure is stable in the sense that if we overestimate p, the result remains correct. An
upper bound for p is also known, p ≤ dim vec (K) + 1, which may be proved rigorously using
Helly type theorems (see e.g. Hettich and Kortanek [12] and the references given there). A typical
behavior of our selection strategy is depicted in Figure 2. These figures describe the evolution of
the extended set Ωe(K) in a run of our nonsmooth technique for example AC8 from [14]. Note
that primary and secondary peaks remain in the extended set over the last 4 iterations.

To conclude this section, notice that one may go one step further in the analysis and dispense
with the hypothesis that maximum eigenvalues have multiplicity one at peak frequencies if a
suitable hypothesis replacing (H) is made. We do not go into details here, as in our experiments,
eigenvalues seem to have multiplicity one as a rule.

5 Applications

In this section, our nonsmooth method is used to design a variety of controllers for a helicopter at
hover. The model is presented in [27], where a comparative study of classical design techniques is
presented. Our tests use a slightly simplified model borrowed from [19]. The helicopter model is
a 5th-order system. Control inputs are the main rotor collective pitch Am (rad) and the tail rotor
collective pitch At (rad). Performance outputs are the vertical position z (m) and the yaw angle
ψ (rad). In this application, vertical and yaw axis dynamics are strongly coupled and unstable.
One must therefore stabilize the helicopter dynamics and achieve good decoupling between the
axes. Also, acceptable settling times must be obtained in response to step inputs. The synthesis
interconnection is a standard S/KS/T structure , see Figure 1.

The interconnection is complemented with an extra channel Td→zy
to prevent inversion of the

helicopter dynamics by the controller. Signal d is an input disturbance. r is a reference input
defined as r := [zref, ψref]. The outputs ze, zu and zy suitably weighted correspond to reference
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Figure 1: synthesis interconnection

tracking, attenuation of high frequency gains and robustness to neglected high frequency dynamics,
respectively.

The authors in [19] use SQP and the Nelder-Mead moving polytope method to compute
reduced-order and PID controllers. A difficulty with these techniques is that they do not offer
any convergence certificate in the presence of nonsmoothness, a feature inherent to H∞ perfor-
mance. The Nelder-Mead method may even fail to converge in the smooth case. Illustrating
examples of smooth and convex functions of two variables are discussed by McKinnon [17]. Not
surprisingly, for a highly nonsmooth problem like the present one, the authors report failure of
the SQP method, whereas the Nelder-Mead method is still capable of making progress as it only
employs function values. However, solutions computed with such a strategy do not give any local
convergence certificate.

Subsequently we attack the helicopter problem using a multidisk H∞ strategy:

minimize
K(s)

f(K) := max
{

‖Td→zy
(K)‖∞, ‖Tr→ze

(K)‖∞, ‖Tr→zu
(K)‖∞,

‖Tr→zy
(K)‖∞, 1e−7 ‖K‖∞, ρ‖T6(K)‖∞

}

.
(27)

Note that the last channel in the definition of f(K) ensures closed-loop stabilization with the
parameter ρ = 1e−6. See our discussion in section 2. The fifth channel enforces stability of the
controller. The weighting filters in Figure 1 are the following [19]:

Wd := 1e−4 I, We :=
600

100s+ 1
I, Wu := 1e−4 I, Wy :=

0.1s

1e−4s+ 1
.

Five different designs have been performed:
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• Design of a full-order controller for the standard H∞ problem through conventional DGKF
techniques

minimize
K(s)

‖Tw→z‖∞

where w := [ d, r ]T , z := [ ze, zu, zy ]T . This controller is of order 9.

• Design of a 4th-order controller through balanced truncation of the full-order controller. This
is a stable and stabilizing controller and can therefore be used to initialize our nonsmooth
technique.

• Direct design of a stable 4th-order controller for the multichannel H∞ synthesis problem in
(27) via our nonsmooth algorithm.

• Design of a decentralized PID controller for the multichannel H∞ synthesis problem in (27)
via our nonsmooth algorithm.

• Design of a decentralized PID controller for the multichannel H∞ synthesis problem in (27),
with prior pre-decoupling of the input matrix. Again, our nonsmooth algorithm is used.

Time-domain simulations for each design are displayed in Figures 3-7. Plots on the left hand
column show responses to a unit step in the vertical position z, while those on the right correspond
to a unit step in the yaw angle ψ. The full-order H∞ controller of order 9 achieves perfect
decoupling of the vertical and yaw axes. Responses significantly deteriorate when this controller
is reduced to 4th order via balanced truncation, Figure 4. A 20% coupling appears on a z-step,
while responses in ψ show unacceptable overshoot. In a next phase, we have therefore used this
4th order controller to initialize our nonsmooth algorithm to compute a locally optimal solution
to (27). The associated simulations are shown in Figure 5. Responses of the optimal controller
are now satisfactory both in terms of coupling and overshoot.

Finally, we have attempted to compute decentralized PID controllers for the same problem
(27) using our nonsmooth algorithm. An initial stabilizing PID controller is first computed using
the hybrid MDS/nonsmooth technique developed in [1]. Since the controller now possesses pure
integral action, we have dispensed with the stability constraint on K in (27). In view of the sim-
ulations in Figure 6, enforcing a pure PID structure seems a severe restriction in this application.
Substantial coupling appears in response to z steps and responses show unacceptable overshoot.
We have tried to improve these results by using a pre-decoupling H where the input matrix B
is replaced with BH as is done classically in helicopter applications. The new PID controller,
however, can still not be considered a valid solution as compared to the stable 4th order controller
of Figure 5. If we insist on a decentralized PID structure, it appears difficult to satisfy all perfor-
mance requirements by feedback alone. Open-loop compensation or feed-forward action might be
necessary to achieve a desired input-output behavior.

For completeness, we provide values of the max-H∞ objective in (27) associated with each
controller in Table 1. Notice that the full-order H∞ controller has a slightly worse max-H∞

objective since channels are not separated in traditional H∞ synthesis. Put differently, the 4th
order controller computed by our method is even slightly better than the full-order controller
obtained via a single channel with weights. This shows that the multi-channel setting, if combined
with our nonsmooth method, allows to address the different specifications much more favorably.
Irrelevant cross channels, such as Td→ze

and Td→zu
in this application, generally hinder proper

minimization of meaningful specifications.
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K(s) full truncated order 4 nonsmooth PID PID pre-decoupling
f(K) 0.78 1.53 0.77 2.05 1.58

Table 1: max-H∞ objectives

Running times for solving the reduced-order and the PID synthesis problems are about 2.5
minutes on a (low-level) SUN-Blade Sparc with 256 RAM and a 650 MHz sparcv9 processor and
with displays of the singular value plots at each iteration activated.

6 Conclusion

We have proposed a new algorithm to minimize the maximum H∞ norm of a finite family of closed-
loop channels, with the option to include structural constraints (control law specifications) on the
controller dynamics. Our method is a first-order nonsmooth descent technique, which exploits
the structure of the Clarke subdifferential of composite functions of the H∞-norm. Its success
hinges on the possibility to compute the H∞-norm very efficiently using the bisection algorithm of
[5]. The case of strongly structured controllers such as PID controllers, has been investigated, and
formulas for the nonsmooth objective functions have been computed. A number of implementation
details of the method have been discussed. Our approach is theoretically justified as we prove
convergence of the iterates towards a local minimum from an arbitrary starting point.

Our method is tested and shown to perform well on a multichannel helicopter control problem.
This is in agreement with previous tests for single channel H∞ synthesis in [1], where sizeable
problems with up to 240 states have been solved.

Finally, since IQC synthesis problems enjoy a similar composite structure, our nonsmooth
approach remains applicable in this context. This important class of problems is currently under
investigation [2].
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Figure 3: Full-order H∞ controller
single channel
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Figure 4: 4th reduced-order H∞ controller
single channel

23



0 1 2 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (sec.)

 z unit step 

 z
 (

ra
d,

 s
ol

id
),

 p
si

 (
m

, d
as

he
d)

0 1 2 3
−1

−0.5

0

0.5

1

1.5

time (sec.)

 A
m

 (
ra

d,
 s

ol
id

),
 A

t (
ra

d,
 d

as
he

d)
 

 z unit step 

0 1 2 3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time (sec.)

 psi unit step 

z 
(r

ad
, s

ol
id

),
 p

si
 (

m
, d

as
he

d)

0 1 2 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

time (sec.)

 A
m

 (
ra

d,
 s

ol
id

),
 A

t (
ra

d,
 d

as
he

d)
 

 psi unit step 

Figure 5: 4th-order controller from nonsmooth technique
multiple channels
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Figure 6: 4th-order PID controller from nonsmooth technique
multiple channels
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Figure 7: 4th-order PID controller from nonsmooth technique
with pre-decoupling and multiple channels
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