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Abstract

Multiband frequency domain synthesis consists in the minimization of a finite family of

closed-loop transfer functions on prescribed frequency intervals. This is an algorithmically

difficult problem due to its inherent nonsmoothness and nonconvexity. We extend our pre-

vious work on nonsmooth H∞ synthesis to develop a nonsmooth optimization technique to

compute local solutions to multiband synthesis problems. The proposed method is shown to

perform well on illustrative examples.

Keywords: H∞-synthesis, multi-channel design, multi-objective optimization, multidisk prob-
lems, concurring performance specifications, static output feedback, reduced-order synthesis, de-
centralized control, PID, NP -hard problems, nonsmooth optimization.

1 Introduction

In this work we present a new algorithmic approach to multi frequency band feedback control
synthesis. We consider simultaneous minimization of a finite family of closed-loop performance
functions

f(K) = max
i=1,...,N

‖Twi→zi(K)‖Ii
, (1)

where K stands for the feedback controller, s 7→ Twi→zi(K, s) is the ith closed-loop performance
channel, and ‖Twi→zi(K)‖Ii

denotes the peak value of the transfer function maximum singular
value norm on a prescribed frequency interval Ii:

‖Twi→zi(K)‖Ii
= sup

ω∈Ii

σ (Twi→zi(K, jω)) .

Typically, Ii is a closed interval Ii = [ωi
1, ωi

2], or more generally, a finite union of intervals:

Ii = [ωi
1, ωi

2] ∪ . . . ∪ [ωi
qi
, ωi

qi+1
],
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where right interval tips may take infinite values. For a single channel, i = 1 and I1 = [0,∞],
minimizing f(K) subject to closed-loop stability reduces to a standard H∞ synthesis problem.

The approach which we present for multiband synthesis was originally laid down in [1–3, 17]
for the standard H∞ synthesis problem. It leads to efficient resolution algorithms, because a
substantial part of the computations is carried out in the frequency domain, where the plant
state dimension only mildly affects cputimes. Our method avoids the notorious difficulty of those
approaches based on linear or bilinear matrix inequalities, where the presence of Lyapunov vari-
ables, whose number grows quadratically with the state-space dimension, quickly leads to large
size optimization programs as systems get sizable. We have identified this as the major source of
breakdown for most existing codes.

Multiband control design is of great practical interest mainly for two reasons:

- Very often practical design criteria are expressed as frequency domain constraints on limited
frequency bands.

- In the traditional approach, weighting functions are used to specify frequency bands. But
the search for suitable weighting functions is often a critical task and their use increases the
controller order.

Despite its importance, only very few methods for multiband synthesis have been reported in the
literature. In [15], the authors develop an extension of the Kalman-Yakubovich-Popov Lemma
[21] in order to handle band restricted frequency domain constraints. The resulting problem is
nonconvex even in the state-feedback case. The authors propose to solve it by forcing convexity,
so that standard SDP solvers can be used. This may lead to a fairly conservative procedure.

There exist classical loop-shaping methods, like for instance the QFT method [14], which
may be used to solve related synthesis problems. The QFT method exploits graphical tools and
interfaces, but in order to work satisfactory, requires an advanced level of intuition. Moreover,
such an approach is no longer suited if additional structural constraints on the controller have to
be satisfied.

Similar comments could be made about synthesis methods based on the Youla parametrization,
which generally lead to high-order controllers, see [9] and references therein. The idea of band
restricted constraints in control design can be traced back to the classical Bode, Nyquist and
Nichols plots to design simple structure controllers such as PID and phase-lag controllers [4, 13].
Unfortunately, these tools are mainly limited to single-input single-output systems, even though
some multivariable generalizations have been attempted over the years [16].

We believe that this state-of-the-art shows an unexplored domain, which warrants a fresh
investigation based on recent progress in optimization for synthesis. As we shall see, an approach
based on (1) allows to take multiband constraints into account much more directly and more
naturally.

It is important to notice that in contrast with H∞ synthesis examined in [3] and multidisk
synthesis [1], multi band design leads to an additional difficulty. Closed loop stability of the
controller K has to be built into a mathematical programming constraint. We discuss and compare
two possibilities how this could be done, and then propose a homotopy and a barrier model suited
for the numerical solution of these models.

The structure of the paper is as follows. In section 2, we provide a precise statement of the
multiband frequency domain control design problem. Two different model algorithms with explicit
stability constraints are discussed in sections 3 and 4. The necessary ingredients to implement a
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sequential penalty/barrier method are detailed in section 5. Numerical experiments are presented
in section 6.

Notation

Let R
n×m be the space of n×m matrices, equipped with the corresponding scalar product 〈X, Y 〉 =

Tr(XT Y ), where XT is the transpose of the matrix X, Tr X its trace. For complex matrices, XH

denotes the transconjugate. For Hermitian or symmetric matrices, X ≻ Y means that X − Y
is positive definite, X � Y that X − Y is positive semi-definite. The notation Hm is used to
designate the set of Hermitian matrices of size m. For ease of notations, we define the following sets
of Hermitian matrices: Bm := {X ∈ Hm : X � 0, Tr (X) = 1}. Consider q-tuples of Hermitian
matrices (Y1, . . . , Yq), we define the set

B
q
m :=

{

(Y1, . . . , Yq) : Yi ∈ Hm, Yi � 0,

q
∑

i=1

Tr (Yi) = 1

}

.

For short, we shall use B or B
q when the dimension needs not be specified. We use the symbols

λmax and λmin to denote the maximum and the minimum eigenvalue of a symmetric or Hermitian
matrix and σ and σ to denote the maximum and the minimum singular value of a general matrix.
The Frobenius norm of a matrix M is denoted ‖M‖F and is defined by ‖M‖F =

√

Tr (MHM). We
shall use concepts from nonsmooth analysis covered by [11]. In particular, for a locally Lipschitz
function f : R

n → R, ∂f(x) denotes its Clarke subdifferential or generalized gradient at x, f ′(x; d)
the Clarke directional derivative. In the sequel of the paper, each Twi→zi is a smooth operator
defined on the open domain D ⊂ R

(m2+k)×(p2+k) of kth order stabilizing feedback controllers

K :=

[

AK BK

CK DK

]

, AK ∈ R
k×k

with values in the infinite dimensional space RH∞ of rational stable transfer matrix functions.

2 Multiband frequency domain design

We consider a plant P in state-space form

P (s) :

[

ẋ
y

]

=

[

A B
C D

] [

x
u

]

together with N concurring performance specifications, represented as a family of plants P i(s)
described in state-space form as

P i(s) :





ẋi

zi

yi



 =





Ai Bi
1 Bi

2

Ci
1 Di

11 Di
12

Ci
2 Di

21 Di
22









xi

wi

ui



 , i = 1, . . . , N, (2)

where xi ∈ R
ni

is the state vector of P i, ui ∈ R
m2 the vector of control inputs, wi ∈ R

mi
1 the

vector of exogenous inputs, yi ∈ R
p2 the vector of measurements and zi ∈ R

pi
1 the controlled
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or performance vector associated with the ith input wi. The performance channels typically
incorporate frequency filters which create new states xi containing the state x of P , so that the
matrices Ai contain the original system matrices A, etc. The difference with the usual multi-
channel synthesis is that each Twi→zi is only tested on a specific frequency band Ii. Without loss,
it is assumed throughout that D = 0 and Di

22 = 0 for all i.
The multiband synthesis problem consists in designing a dynamic output feedback controller

ui = K(s)yi for the plant family (2) with the following properties:

• Internal stability: The controller K stabilizes the original plant P in closed-loop.

• Performance: Among all internally stabilizing controllers, K minimizes the worst case
performance function f(K) = max

i=1,...,N
‖Twi→zi(K)‖Ii

.

We assume that the controller K has the following frequency domain representation:

K(s) = CK(sI −AK)−1BK + DK , AK ∈ R
k×k, (3)

where k is the order of the controller, and where the case k = 0 of a static controller K(s) = DK

is included.
Often practical considerations require additional structural constraints on the controller K.

For instance, it may be desired to design low-order controllers (0 ≤ k ≪ ni) or controllers with
prescribed-pattern, sparse controllers, decentralized controllers, observed-based controllers, PID
control structures, synthesis on a finite set of transfer functions, and much else. Formally, the
synthesis problem may then be represented as

minimize f(K) = max
i=1,...,N

‖Twi→zi(K)‖Ii

subject to K stabilizes (A, B, C)
(4)

Note that structural constraints on the controller of the form Kij = 0 are easily incorporated in
program (4) by restricting K to the suitable vector space.

Remark: A difficulty in program (4) is that the stability constraint K ∈ D, where D is the set
of stabilizing controllers, is not a constraint in the usual sense of mathematical programming,
because the set D is open, and an element K on the boundary of this domain is not a valid
solution. Since an optimization algorithm for (4) will converge to a solution on the boundary of
D, we have to modify this constraint in order to avoid numerical failure. Notice that a similar
imbroglio arises in more familiar situations like in the bounded real lemma or the KYP-lemma,
where we have to replace strict inequalities B(x) ≺ 0 by non strict inequalities B(x) � −εI for
a suitable threshold ε > 0. The problem is then in all these cases to make the choice of such a
threshold physically meaningful.

3 Model I: distance to instability

In this section we present a first systematic way to build a constraint which guarantees closed-loop
stability. To simplify the presentation, we work with static controllers.

Let us start by introducing a stabilizing channel s 7→ Tstab(K, s) := (sI − (A + BKC))−1 for
P , where P is the original plant without performance channels, defined by (A, B, C) and D = 0.
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Then K stabilizes P in closed-loop if and only if Tstab(K) is stable. The stability domain D in (4)
may then be written as

D = {K ∈ R
m2×p2 : ‖ (sI − (A + BKC))−1 ‖∞ < +∞},

where ‖ · ‖∞ is the H∞ norm. We then replace D by the smaller closed set

Db = {K ∈ R
m2×p2 : ‖ (sI − (A + BKC))−1 ‖∞ ≤ b},

where b > 0 is some large constant. The following mathematical program may then be considered:

minimize f(K) = max
i=1,...,N

‖Twi→zi(K)‖Ii

subject to g(K) := ‖Tstab(K)‖∞ ≤ b
(5)

When the parameter b is relevant, we refer to this program as (5)b, or as the large constant
program.

Is there a natural way to fix the numerical value b? To answer this question we consider the
spectral abscissa of a system matrix A,

α(A) = max{Re λ : λ eigenvalue of A},

also known as the stability degree of the transfer matrix H(s) = (sI − A)−1, [8, p. 138]. For a
threshold ε > 0 the pseudo-spectral abscissa is defined as

αε(A) = max{Re λ : λ eigenvalue of some A′ with ‖A− A′‖F ≤ ε}.

While stability of a system A is equivalent to α(A) < 0, we can interpret αε(A) ≤ 0 as some
robust form of stability, a point of view put forward in [22] and [10]. In particular, for every ε > 0,
αε(A) ≤ 0 implies α(A) < 0.

In order to decide how to choose ε > 0, we consider the distance to instability of a matrix

β(A) = inf{‖X‖F : A + X instable}.

It is easy to see that

αε(A) ≤ 0 ⇔ β(A) ≥ ε ⇔ ‖(sI − A)−1‖∞ ≤
1

ε
.

That means, our natural choice is b = 1/β, where β is the smallest distance to instability which
we grant the closed loop system A + BKC.

How do we solve program (5) numerically? This will be explained during the remainder of this
section. We introduce the optimization program

min
K∈Rm2×p2

max

{

max
i=1,...,N

‖Twi→zi(K)‖Ii
, µ‖Tstab(K)‖∞

}

(6)

= min
K∈Rm2×p2

max {f(K), µ g(K)} =: min
K∈Rm2×p2

fµ(K) .

We refer to (6)µ as the penalty program, to µ > 0 as the penalty parameter, and to fµ as the
penalty function.
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Lemma 1 Let Kµ be a local minimum of (6)µ which is non degenerate in the sense that it is
neither a local minimum of f alone, nor a local minimum of g alone. Then Kµ is a Karush-Kuhn-
Tucker point of program (5)b(µ) with b(µ) = g(Kµ) = f(Kµ)/µ.

Proof: Given the fact that Kµ is non degenerate, the necessary optimality conditions for program
(6)µ are as follows: There exists 0 < tµ < 1 such that

0 ∈ tµ∂f(Kµ) + (1− tµ)µ∂g(Kµ) and f(Kµ) = µg(Kµ).

Let us now write the Karush-Kuhn-Tucker conditions for (5)b: There exists a Lagrange multi-
plier λb such that

0 ∈ ∂f(Kb) + λb∂g(Kb), g(Kb)− b ≤ 0, λb ≥ 0, λb(g(Kb)− b) = 0.

We then see that the solution Kµ of (6)µ solves (5)b if we set

b(µ) = g(Kµ), λb(µ) =
(1− tµ)µ

tµ
.

This proves the claim. �

This result has a natural converse.

Lemma 2 Let Kb be a local minimum of program (5)b which is non degenerate in the sense that
it is not a Karush-Kuhn-Tucker point of f alone. Then Kb is a critical point of program (6)µ(b)

with µ(b) = f(Kb)
g(Kb)

.

Proof: We compare once again the necessary optimality conditions. Reading the formulas
backwards, we first find that

µ(b) =
f(Kb)

g(Kb)
.

Then reading λb = (1−tµ)µ
tµ

backwards leads to

tµ(b) =
µ(b)

λb + µ(b)
=

f(Kb)

f(Kb) + λbg(Kb)
∈ (0, 1).

�

Remark: Picking the correct local minimum in each program, we see that there is now at least
locally a one-to-one correspondence between both programs, (5)b and (6)µ, in the sense that the
functions µ 7→ b(µ) and b 7→ µ(b) are inverse to each other, and Kb = Kµ(b), Kµ = Kb(µ). In
order to find the solution Kb for the parameter b = β−1 chosen above, we therefore have to find
µ(b) = µ(β−1) and solve the corresponding penalty program (6)µ(β−1).

Remark: Based on the above Lemmas, we may (and will) use the penalty program (6)µ to
solve the distance to instability model (5)b numerically. Notice, however, that this is basically
a homotopy method, because the parameter b(µ) is gradually driven toward its final value b by
adjusting µ. In particular, this model should not be confused with penalty methods like interior-
point or augmented Lagrangian methods. Notice that the problem may become ill-conditioned
when b is chosen too small.
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4 Model II: shifting poles

Let us now consider a second possibility to fix a closed subset of D, this time based on the shifted
H∞ norm, [8, p. 100 ]:

‖H(·)‖∞,α = ‖H(·+ α)‖∞.

For α < 0, the condition ‖H‖∞,α < +∞ guarantees that the poles of H(s) lie to the left of the
line Re s = α < 0. That means that for every α < 0, the closure D

α
of the open domain

Dα = {K ∈ R
m2×p2 : ‖ (sI − (A + BKC))−1 ‖∞,α < +∞}

is a possible candidate for a mathematically tractable constraint set, because D
α
⊂ D. Indeed,

elements K on the boundary of Dα still have Re λ ≤ α < 0 for the poles λ of A+BKC, hence these
K are closed-loop stabilizing. In consequence, we consider the following optimization program

minimize f(K) = max
i=1,...,N

‖Twi→zi(K)‖Ii

subject to K ∈ D
α (7)

which we denote as (7)α if the parameter α < 0 matters.
Having prepared the rationale, let us now discuss an algorithmic approach to program (7).

The situation is slightly more complicated than in the penalty case, because the feasible domain
is not easily represented as a constraint set in the usual sense of nonlinear programming. What
we have, though, is a barrier function for the domain Dα. Putting

hα(K) = ‖Tstab(K)‖∞,α,

where Tstab(s) := (sI − (A + BKC))−1 is the stabilizing channel for plant P , we see that

Dα = {K ∈ R
m2×p2 : hα(K) < +∞}.

We may then consider the following family of programs

min
K∈Rm2×p2

max {f(K), µ hα(K)} =: min
K∈Rm2×p2

fµ,α(K), (8)

denoted as (8)µ,α when a reference to µ > 0 and α < 0 is made. We refer to fµ,a(K) as the barrier
function.

We now have the following result, relating (7) and (8).

Lemma 3 Let Kµ,α be a local minimum of (8)µ,α which is non degenerate in the sense that it is
neither a critical point of f alone, nor a critical point of hα alone. Let Kα be an accumulation
point of the sequence Kµ,α as µ→ 0. Suppose minω∈R+ σ(jωI − (ABKaC − αI)) is attained on a
finite set of frequencies. Then Kα is a critical point of program (7)α.

Proof: 1) Let us start by writing down the necessary optimality condition for program (7)α at
Kα. It says that there exists a subgradient G ∈ ∂f(Kα) such that −G is in the Clarke normal
cone ND

α(Kα) of the set D
α

at Kα. See e.g. [6] for this.
2) Let us next write the necessary optimality conditions for program (8)µ,α. They say that

there exists 0 < tµ,α < 1 such that

0 ∈ tµ,α∂f(Kµ,α) + (1− tµ,α)µ ∂hα(Kµ,α), f(Kµ,α) = µ hα(Kµ,α).
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We introduce the level sets

Dα(µ) = {K ∈ R
m2×p2 : hα(K) ≤ hα(Kµ,α)}.

There are now two possibilities. Either hα(Kµ,α) → ∞ as µ → 0, or there exists a subsequence
for which these values are bounded. In the latter case, from the right hand equation above, we
then have f(Kµ,α) → 0, hence f(Kα) = 0. This case is clearly exceptional, because here Kα is a
global minimum of f alone.

3) Let us now assume that hα(Kµ,α) → ∞, so that the domains Dα(µ) grow as µ → 0. In
fact, we now have ∪µ>0D

α(µ) = Dα. From the left hand condition above we see that there exists
a subgradient Gµ,α ∈ ∂f(Kµ,α) such that

−
(1− tµ,α)µ

tµ,α

Gµ,α ∈ ∂hα(Kµ,α).

In other words, the negative subgradient −Gµ,α of f at Kµ,α is a direction in the normal cone
NDα(µ)(K

µ,α) to the level setDα(µ) at Kµ,α. Passing to a subsequence, we may assume that Gµ,α →
Gα, and therefore upper semicontinuity of the Clarke subdifferential [11] gives Gα ∈ ∂f(Kα). We
now wish to show that Gα is in the normal cone ND

α(Kα), because then the necessary optimality
condition in step 1) is satisfied.

4) Let us introduce the following function

φα(K) =

{

−hα(K)−2 if hα(K) <∞
0 else

Then Dα = {K : φα(K) < 0}, and Dα(µ) = {K : φα(K) ≤ − 1
hα(Kµ,α)2

}. Notice, however, that

D
α
6= {K : φα(K) ≤ 0}. That means, we cannot directly conclude with the help of the upper

semicontinuity of the Clarke subdifferential of φα, as we did above for the subdifferential of f .
This is what complicates this proof.

Let us show that φα is locally Lipschitz. Since hα is locally Lipschitz, this is certainly true in
the set Dα. Only points K on the boundary might cause problems. But

φα(K) = −hα(K)−2 = −
1

maxω∈R+ σ
(

(jωI −A−BKC + αI)−1)2

= − min
ω∈R+

σ (jωI − A−BKC + αI)2

= − min
ω∈R+

λmin

(

[(jω + α)I − (A + BKC)][(jω + α)I − (A + BKC)]H
)

and this is a locally Lipschitz function, because for fixed ω, the minimum eigenvalue of an Hermi-
tian matrix function is locally Lipschitz. The min operator does not alter this. This representation
also shows that φα has value 0 even outside the set D

α
, which is therefore not the level set of φα

at level 0.
Now we use again upper semi-continuity of the Clarke subdifferential. We have

lim sup
µ→0

∂φα(Kµ,α) ⊂ ∂φα(Kα).

This implies
lim sup

µ→0
NDα(µ)(K

µ,α) ⊂ Λα(Kα),
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where Λα(K) is the convex cone generated by the compact convex set ∂φα(K), because the normal
cone to Dα(µ) is generated by the subdifferential of φα at Kµ,α. Recall the difficulty: our proof is
not finished because Λα(Kα) is not identical with the Clarke normal cone ND

α(Kα) to D
α

at Kα.

Let us show that Λα(Kα) is pointed, that is, Λα(Kα) ∩−Λα(Kα) = {0}. This follows as soon
as we show that ±G ∈ ∂φα(Kα) implies G = 0.

By hypothesis, the minimum singular value at Kα is attained on a finite set of frequencies.
This implies that φα is Clarke regular at Kα. Hence the Clarke directional derivative coincides
with the Dini directional derivative. That means

∂φα(Kα) = {G : ∀D 〈G, D〉 ≤ φ′
α(Kα; D) = lim inf

t→0+
t−1 (φα(Kα + tD)− φα(Kα))}.

But φα(Kα) = 0 so for fixed ε > 0 we can find tε > 0 such that 〈G, D〉 ≤ t−1
ε φα(Kα + tεD)+ε ≤ ε,

the latter since φα ≤ 0. We have shown 〈G, D〉 ≤ ε, and since ε was arbitrary, we have 〈G, D〉 ≤
0. Now we use the fact that −G is also a subgradient. Repeating the argument then shows
−〈G, D〉 ≤ 0. Altogether, 〈G, D〉 = 0, and since D was arbitrary, this gives G = 0.

5) Having shown that Λα(Kα) is pointed, it follows that the convex hull of lim sup
µ→0

NDα(µ)(K
µ,α)

is pointed, because by 4) it is contained in Λα(Kα). Now we use Proposition 4.1 and Theorem 2.3
in [12] to deduce that lim sup

µ→0
NDα(µ)(K

µ,α) ⊂ ND
α(Kα). In the terminology of that paper, this

property is referred to as normal convergence. �

Remark: 1) Note that the above reasoning and formulas carry over to dynamic controllers if a
standard dynamic augmentation of the plant is performed. See [3] for details.

2) Notice that the barrier function in (8) and the penalty function in (6) have almost identical
structure. This means that the algorithmic approach discussed in the following sections applies
to both programs with minor adaption.

3) Normal convergence of sets as defined in [12] is a suitable concept to describe approximation
of mathematical programs. If the constraint set is repesented as the level set of a locally Lipschitz
operator, normal convergence is satisfied. However, in our case, the limiting set D

α
is not a level

set, which complicates the situation. Academic counterexamples where normal convergence fails
can be constructed; see [12].

Remark: The method of this section is a penalty method, because here α is fixed from the
beginning, while µ has to be driven to 0 to achieve convergence. So here µ plays a role similar to
the barrier parameter in interior-point methods. As our experiments show, this requires a final
µ≪ −α, so ill-conditioning may occur when α is chosen too small.

5 Algorithms for multiband control design

In the sequel, we describe the different ingredients for solving the multiband control design problem
with algorithm models I and II of sections 3 and 4, respectively. Specifically, we discuss how the
penalty program (6)µ and the barrier program in (8)µ,α are solved, for fixed µ, respectively for
fixed µ, α and how the overall algorithm is organized.

9



5.1 Subdifferential of the barrier function

At the core of our algorithm is the computation of the Clarke subdifferential of the barrier function
fµ and the penalty function fµ,α. Precursors of the results here were obtained in [3] for the H∞

norm. Below we will therefore focus on what is new.
In order to unify the presentation, we introduce a common terminology for both cases. For

the penalty function fµ at fixed µ > 0, we introduce a new closed-loop transfer channel:

TwN+1→zN+1(K) = µ Tstab(K),

so that fµ(K) = maxi=1,...,N+1 ‖Twi→zi(K)‖Ii
when we set IN+1 = [0,∞]. Similarly, for the barrier

function fµ,α at fixed µ > 0, α < 0, we introduce the (N + 1)st channel in the form

TwN+1→zN+1(K, s) = µ Tstab(K, s + α),

so that again fµ,α(K) = maxi=1,...,N+1 ‖Twi→zi(K)‖Ii
with IN+1 = [0,∞].

Noting that the formulas for the Clarke subdifferential of fµ,α are easily inferred from those
of fµ, we will restrict the discussion to fµ from now on. Assuming a static controller, k = 0, we
introduce the simplifying closed-loop notation in state space

Ai(K) := Ai + Bi
2KCi

2, B
i(K) := Bi

1 + Bi
2KDi

21, C
i(K) := Ci

1 + Di
12KCi

2,
Di(K) := Di

11 + Di
12KDi

21 ,
(9)

and in frequency domain

[

Twi→zi(K, s) Gi
12(K, s)

Gi
21(K, s) ⋆

]

:=

[

Ci(K)
Ci

2

]

(sI −Ai(K))
−1

[Bi(K) Bi
2 ] +

[

Di(K) Di
12

Di
21 ⋆

]

.

Here, for i = N + 1, we define the plant

P N+1(s) :





ẋN+1

zN+1

yN+1



 =





A I B
I 0 0
C 0 0









xN+1

wN+1

uN+1



 , i = 1, . . . , N, (10)

where xN+1 ∈ R
n, n is the dimension of A, uN+1 ∈ R

m2 , wN+1 ∈ R
n, yN+1 ∈ R

p2, and zN+1 ∈ R
n.

Let us now introduce the notion of active frequencies. For a given controller K, active channels
or specifications are obtained through the index set

Iµ(K) := {i ∈ {1, . . . , N + 1} : ‖Twi→zi(K)‖Ii
= fµ(K)}, (11)

Moreover, for each i ∈ Iµ(K), we consider the set of active frequencies

Ωi
µ(K) = {ω ∈ Ii : σ (Twi→zi(K, jω)) = fµ(K)}.

We assume throughout that Ωi
µ(K) is a finite set, indexed as

Ωi
µ(K) = {ωi

ν : ν = 1, . . . , pi}, i ∈ Iµ(K). (12)

The set of all active frequencies is denoted as Ωµ(K). Armed with these definitions, we have the
following:

10



Theorem 5.1 Assume that the controller K is static, k = 0, and stabilizes the basic plant P N+1

in (10), that is, K ∈ D. With the notations introduced in (11) and (12), let Qi
ν be a matrix whose

columns form an orthonormal basis of the eigenspace of Twi→zi(K, jωi
ν)Twi→zi(K, jωi

ν)
H associated

with the largest eigenvalue λmax

(

Twi→zi(K, jωi
ν)Twi→zi(K, jωi

ν)
H

)

= σ(Twi→zi(K, jωi
ν))

2. Then,
the Clarke subdifferential of the mapping fµ at K ∈ D is the compact and convex set

∂fµ(K) = {ΦY : Y := (Y 1
1 , . . . , Y 1

p1, . . . , Y
q
1 , . . . , Y q

pq) ∈ B
p}

with p :=
∑

i∈Iµ(K) pi, q is the number of elements in Iµ(K) and where

ΦY = fµ(K)−1
∑

i∈Iµ(K)

∑

ν=1,...,pi

Re
{

Gi
21(K, jωi

ν) Twi→zi(K, jωi
ν)

HQi
νY

i
ν (Qi

ν)
HGi

12(K, jωi
ν)

}T
. (13)

The formula also applies to fµ,α when suitably adapted.

Proof: The proof is based on the representation of the Clarke subdifferential of finite maximum
functions [11], and is omitted for brevity. The reader is referred to [1, 3, 5, 17] for related cases.

�

5.2 Solving the subproblem

In this section we describe an extension of the nonsmooth technique originally developed in [2, 3]
for H∞ synthesis, and in [1] for multidisk problems. The method is convergent and has been tested
on a variety of sizable problems.

As before, we consider minimization of fµ for fixed µ, and minimization of fµ,α for fixed µ, α.
This is referred to as solving the subproblem. We define

fµ(K, ω) := max
i=1,...,N+1

{σ (Twi→zi(K, jω)) : ω ∈ Ii} ,

We see that fµ(K) = maxω∈[0,∞] fµ(K, ω), so that minimization of fµ may be interpreted as a
semi-infinite minimization problem involving the infinite family fµ(·, ω). At given K, recall that
Ωµ(K) is the set of active frequencies at K. Clearly, fµ(K, ω) ≤ fµ(K) for all ω ∈ [0,∞] and
fµ(K, ω) = fµ(K) for ω ∈ Ωµ(K). As a consequence of Theorem 5.1, the subdifferential of the
function fµ(K, ω) at K is the set of subgradients

ΦY,ω := fµ(K, ω)−1
∑

i∈Iω(K)

Re
{

Gi
21(K, jω) Twi→zi(K, jω)HQi

ωY i
ω(Qi

ω)HGi
12(K, jω)

}T
,

where
Iω(K) = {i ∈ {1, . . . , N + 1} : ω ∈ Ii, σ(Twi→zi(K, jω)) = fµ(K, ω)}

is the index set of active models at frequency ω. Here the columns of the matrix Qi
ω form an

orthonormal basis of the eigenspace of Twi→zi(K, jω)Twi→zi(K, jω)H associated with its largest
eigenvalue, and

∑

i∈Iω(K)

Tr Y i
ω = 1 , Y i

ω = (Y i
ω)H � 0 .
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An important feature of the proposed technique is to allow finite extensions of the set of active
frequencies: Ωe,µ(K) ⊇ Ωµ(K). The way Ωe,µ(K) is constructed will be presented in section 5.3,
but the idea is as follows: At the current K only a finite set of fµ(·, ω), ω ∈ Ωµ(K) is active.
Therefore, minimizing fµ in a neighborhood of K is reduced to minimizing this finite family.
This local phenomenon is also reflected by the fact that subgradients at K only depend on these
active fµ(·, ω), ω ∈ Ωµ(K). However, as we move away from the current K to a nearby K ′, other
functions fµ(K ′, ω′), ω′ 6∈ Ωµ(K), will become active. If this happens too early, the descent step
proposed by the local model will be poor. By choosing an enlarged set Ωe,µ(K), including some of
the frequencies ω′ outside Ωµ(K), we hope to render the step from K to the new K ′ more robust.

For any such finite extension Ωe,µ(K), and for fixed δ > 0, we introduce a corresponding
optimality function

θe,µ(K) := inf
H∈Rm2×p2

sup
ω∈Ωe,µ(K)

sup
P

i∈Iω(K)

Tr Y i
ω=1, Y i

ω�0

−fµ(K) + fµ(K, ω) + 〈ΦY,ω, H〉+
1

2
δ‖H‖2F . (14)

When Ωe,µ(K) = Ωµ(K), we use the notation θµ(K). Since Ωµ(K) ⊂ Ωe,µ(K), we have θµ(K) ≤
θe,µ(K) for any of these extensions.

We refer to θµ(K) and θe,µ(K) as optimality functions, because they share the following prop-
erty: θe,µ(K) ≤ 0 for all K, and θe,µ(K) = 0 implies that K is a critical point of fµ [3]. Similar
optimality functions have been used in the work of E. Polak, see [18–20] and the references given
there. Optimality functions can be used to generate descent steps. In order to do this, we show
that optimality function (14) has a tractable dual form.

Proposition 5.2 The dual formula for θe,µ(K) is:

θe,µ(K) = sup
P

ω∈Ωe,µ(K) τω=1, τω≥0

sup
P

i∈Iω(K) Tr Y i
ω=1, Y i

ω�0

∑

ω∈Ωe,µ(K)

τω(fµ(K, ω)−fµ(K))−
1

2δ
‖

∑

ω∈Ωe,µ(K)

τωΦY,ω‖
2
F .

(15)
The associated optimal descent direction in the controller space is given as

H(K) := −
1

δ

∑

ω∈Ωe,µ(K)

τωΦY,ω . (16)

Proof: The proof is essentially covered by the results in [1] and is omitted for brevity. �

Remark: The appealing feature of program (15) is that it is a small size SDP, or even a convex
QP when singular values are simple, which appears to be the rule.

Remark: It is also worth noting here that band restricted norms ‖ · ‖Ii
and peak frequencies

ω ∈ Ωµ(K) are easily computed via the bisection algorithm in [7]. We only have to confine the
search for peak frequencies to the intervals Ii for i = 1, . . . , N + 1.

Proposition 5.2 suggests the following descent scheme for solving the subproblems for given K
and µ respectively µ, α .

12



Nonsmooth descent algorithm for the subproblem

Fix δ > 0, 0 < ϑ < 1, 0 < ρ < 1.

1. Initialization. Find a controller K which stabilizes the plant P .
2. Generate frequencies. Given the current K, compute fµ(K) and obtain active

frequencies Ωµ(K). Select a finite enriched set of frequencies containing Ωe,µ(K)
Ωµ(K).

3. Descent direction. Compute θe,µ(K) and the solution (τ, Y ) of SDP or convex
QP (15). If θe,µ(K) = 0, stop, because 0 ∈ ∂fµ(K). Otherwise compute descent
direction H(K) given in (16).

4. Line search. Find largest t = ϑk such that fµ(K + t H(K)) ≤ fµ(K) + tρθµ(K)
and such that K + tH(K) remains stabilizing.

5. Step. Replace K by K + tH(K), increase iteration counter by one, and go back
to step 2.

Remark: The results in [1,3] can be used to prove that for fixed µ the descent scheme converges to
a critical point Kµ with 0 ∈ ∂fµ(Kµ), starting from arbitrary K ∈ D. Naturally, convergence of the
overall scheme then follows when we combine this with Lemmas 1,2 and 3. Notice that subproblems
become ill-conditioned when µ gets too small, witnessed by a large number of iterations or even
failure to reach criticality. Notice, however, that ill-conditioning can be avoided by choosing b (in
model I) and α (in model II) of moderately small size. Moreover, experience with both algorithms
suggests starting each subproblem with a good approximation of a local solution. This is examined
in detail in the next section.

5.3 Enriched sets of frequencies

Choosing an extended set of frequencies Ωe,µ in step 2 is a key ingredient for the success of our
technique and is beneficial mainly for two reasons:

- It renders the algorithm less dependent on the accuracy within which peak frequencies in Ωµ

are computed. A consequence is that the computed search direction behaves more smoothly.

- It captures more information on the frequency responses ω 7→ σ (Twi→zi(K, jω)) on their
associated intervals Ii. This leads to better step lengths.

In our numerical testing, we have used the following simple scheme to compute an enlarged set of
frequencies:

Construction of enriched sets of frequencies
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Fix 0 < η < 1.

1. Compute fµ(K) using a band restricted version of the bisection algorithm [7] ap-
plied to each channel Twi→zi and obtain Ωµ(K).

2. Define a cut-off level γc := η fµ(K).

3. Determine nearly active channels using γc. Channel with index i is retained for
frequency griding whenever ‖Twi→zi(K)‖Ii

≥ γc.

4. For each nearly active model i, grid frequency subintervals of Ii where
σ(Twi→zi(K, jω)) ≥ γc and add peak frequencies of fµ(K) to assure that Ωe,µ(K)
contains Ωµ(K).

5. If Ωe,µ(K) is too large, truncate to retain the first F frequencies with leading
singular values.

More sophisticated versions of this scheme are possible [1], but the above simple scheme was
efficient in a number of experiments. Typical values for η used in the experimental section are
η = 0.8 or η = 0.9. The number of retained frequencies is between F = 30 and F = 300, which
allows to keep control of the computational load to generate search directions.

5.4 Combined algorithm

We have to assemble the elements of the previous sections into a combined algorithm. Here a
difference between models (6) and (8) occurs. Namely, in the first case we have to drive µ to the
specific value where b(µ) = β−1, where β > 0 is our prior threshold for the distance to instability
(homotophy method). On the other hand, in model (8), we fix the threshold α < 0 for the poles λ
of the closed loop systems, that is Re λ ≤ α < 0, but have to drive µ to zero (barrier method). In
both cases, however, we will follow the idea of the homotopy approach and start with a moderate
size µ to solve (6)µ respectively (8)µ,α. Then we will update µ to µ+ and use the solution Kµ,α as
initial point for the next solution of the subproblem. Different strategies to steer the parameter µ
are discussed in the experimental section. What will also have to be discussed is to what precision
the early subproblems need to be solved, and how a successive refinement should be organized.

6 Numerical experiments

As a simple example, we consider the double integrator G(s) =
1

s2
which is one of the most

fundamental plants in control applications. Design specifications in the form of multiband con-
straints are borrowed from [23] and involve the sensitivity function S := (I + GK)−1 and the
complementary sensitivity function T := GK(I + GK)−1. Multiband constraints are as follows

• disturbance rejection and tracking

|S(jω)| ≤ 0.85, for ω ∈ I1 := [0, 0.5], rad./s

• gain-phase margins

|S(jω)| ≤ 1.30, for ω ∈ I2 := [0.5, 2], rad./s
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• bandwidth
|T (jω)| ≤ 0.707, for ω ∈ I3 := [2, 4], rad./s

• roll-off
|w(jω) T (jω)| ≤ 1.0, for ω ∈ I4 := [4, ∞], rad./s,

where w(s) is the weighing function

w(s) :=
0.2634s2 + 1.659s + 5.333

0.0001s2 + 0.014s + 1
.

This problem is cast as a multiband H∞ synthesis problem in the form (4):

minimize f(K) := max

{

1

0.85
‖S‖I1,

1

1.30
‖S‖I2,

1

0.707
‖T‖I3, ‖w(s)T‖I4

}

subject to K stabilizes G(s)

As explained in section 2, the stability constraint could be represented either as distance to
instability constraint, using the penalty function:

minimize fµ(K) := max

{

1

0.85
‖S‖I1,

1

1.30
‖S‖I2,

1

0.707
‖T‖I3, ‖w(s)T‖I4, µ‖Tstab‖∞

}

(model algorithm I) where µ is the penalty parameter, and where Tstab(K, s) = (sI−(A+BKC))−1

is the stabilizing channel for the plant, or as a barrier approach (model algorithm II), where we
consider

minimize fµ,α(K) := max

{

1

0.85
‖S‖I1,

1

1.30
‖S‖I2,

1

0.707
‖T‖I3, ‖w(s)T‖I4, µ‖Tstab‖∞,α

}

for a threshold α < 0, restricting poles λ of the closed-loop system to Re λ ≤ α < 0, and for the
barrier parameter µ > 0. In particular, it will be interesting to see the relationship between β and
−α.

6.1 Model I: numerical difficulties with a single solve

In order to emphasize the numerical difficulties with small penalty parameters we have conducted
a family of experiments for various values of β, assuming that the corresponding penalty values µ
are known. All experiments are started from the same stabilizing controller K. The order of the
sought controller was set to k = 1 in this preliminary study.

Our first experiment shows that it may not be a good idea to solve program (6) directly for
the ”correct” value µβ giving b(µβ) = β−1 = b, because numerical difficulties arise.

β µ multiband performance iter

0.68 10 0.09 0.42 1.43 1.44 26

0.35 1 0.17 1.06 1.07 2.84 32∗

0.07 0.01 1.44 1.17 0.25 1.44 > 200

1.3e−4 1e−3 0.20 0.51 1.13 7.57 5∗

Table 1: Numerical difficulties when solving directly for µβ
∗ failure to achieve descent
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The second column in Table 1 displays values of the penalty parameter µ needed to achieve the
distance to instability β given in column 1. The third column provides the achieved multiband
performances in the order of their introduction. The last column gives the number of inner
iterations needed to reach convergence. Boxed values correspond to the final (max) multiband
performance.

Note that none of the designs satisfies the performance requirements given in the beginning
of the section as a value of the multiband performances below unity is required for this to hold.
When β decreases and the penalty parameter µ therefore also takes smaller values, problems
become increasingly ill-conditioned and either a large number of iterations are performed (row
3) or failure to achieve descent occurs (rows 2 and 4). Typically, breakdown occurs when the
computed search direction is pointing uphill.

The conclusion of these experiments is that a homotopy search in the parameter µ is required.
Steering µ directly or too quickly to the correct value µβ, respectively to 0, causes failure.

6.2 Design with algorithms I and II

To overcome the above difficulties, we consider a sequence of subproblems where the barrier
parameter µ is gradually decreased and controllers obtained for a subproblem serve as initial point
for the next subproblem. As we are using a first-order nonsmooth method, the barrier parameter
must not be decreased too aggressively. In the experiments to follow, we have used the update
µ ← µ/3. For the same reason, subproblems are stopped as soon as a rather mild criticality
condition is satisfied. Our stopping criterion for the subproblems uses the criticality measure
θe,µ(K) ≤ 0 in (15) and is defined as θe,µ(K) > −εs with the updating rule εs ← max(1e−4, εs/2)
and the initialization εs = 10. In this form, we require less computational work in the early
iterations, while accuracy is gradually increased as we get close to a local solution.

Design with algorithm model I

According to our analysis in section 3, we have set b to a large value, b = 105, which corresponds
to the distance to instability β = 10−5. The penalty parameter µ is then decreased as long as
‖ (sI − (A + BKC))−1 ‖∞ < b. Results are given in Table 2.

Design with algorithm model II

Here the strategy is radically different as we require a minimum stability degree using the shifted
H∞ norm in section 4. Based on the philosophy −α ≈ β, we have set α = −1e−5. The barrier
parameter µ is driven to zero with the updating rule mentioned above as long as µ > 1e−8. Both
algorithms I and II are initialized with the same stabilizing controller, see Table 2.

α β multiband performance µ iter K(s)

initial −0.76 0.26 0.091 0.283 2.41 42.37 - - 31.41s+23.05
s+2.286

model I −6.322e−5 1e−5 0.846 0.846 0.31 0.846 5.51e−5 108 2.31s+2.78e−8
s+4.26

model II −1.02e−5 7.32e−8 0.846 0.846 0.31 0.846 8.6e−9 90 2.31s+2.35e−5
s+4.26

Table 2: Designs with algorithm models I and II. In model I the value β = 10−5 is fixed, in
model II the value Reλ = −α = 10−5 is imposed.
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Column ‘α’ and ‘β’ provide the initial and final closed-loop spectral abscissa and distance
to instability, respectively. The fourth column displays the achieved multiband performances.
Column ‘µ’ gives the final values of the penalty respectively barrier parameter. Column ‘iter’
indicates the total number of inner iterations to meet our termination criterion.

Note first that controllers obtained with algorithm models I and II both meet all design require-
ments since all band restricted performances are below unity. This represents 20 % improvements
over the results in [23]. Controllers obtained using both methods are nearly indistinguishable.
Algorithm model II appears markedly superior in terms of number of inner iterations, a fact that
should be confirmed on a complementary set of numerical experiences.

Figures 1 and 2 display the evolutions of the four band restricted performances versus the
subproblem iteration index. Clearly, model algorithms I and II behave very similarly and could
be stopped much earlier to reduce the computational overhead. It is also instructive to note
that both techniques terminate at a nonsmooth local minimum where 3 over 4 band restricted
performances coincide. A phenomenon that is often observed with nonsmooth problems and which
has motivated research in nonsmooth optimization.

0 5 10 15 20
0

0.5

1

1.5

2

2.5

3

3.5

4

 subproblem iteration index 

 b
an

d 
re

st
ric

te
d 

pe
rf

or
m

an
ce

s 

Figure 1: Evolution of band restricted performances vs. subproblem index
model algorithm I

For illustration purpose, in Figures 3 and 4 we show the gain plots of each channel at different
stages of the barrier algorithm. The vertical lines indicate the frequency bands Ii. The horizontal
lines define the cut-off level γc used to construct enriched sets of frequencies. The asterisk symbols
correspond to gridded frequencies which have been selected to construct the enriched sets Ωe,µ

and the bundle of subgradients. Figure 4, which correspond to the last inner iteration, provides a
graphical verification of the achieved band restricted performances.
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Figure 2: Evolution of band restricted performances vs. subproblem index
model algorithm II

7 Conclusion

Multiband H∞ synthesis is a practically important problem for which convincing algorithmic ap-
proaches are lacking. We have presented a new approach to this difficult problem using methods
from nonsmooth optimization. Two ways to model closed-loop stability as a mathematical pro-
gramming constraint have been introduced, discussed and compared. They are addressed by a
homotopy method (model I) and a barrier approach (model II). Both approaches are combined
with a suitable nonsmooth optimization method, for which convergence has been established.
Both models work satisfactory on a numerical test example involving the double integrator.
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Figure 3: singular values of each specifications vs. frequency (rad/s)
µ = 1.23e−1

‘*’ selected frequencies to form bundle of subgradients
outer iteration 5, inner iteration 6
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