Missile autopilot design via a multi-channel LFT /LPV control method
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Abstract

In this paper, the missile pitch-axis autopilot design is revisited using a new and recently
available Linear Parameter-Varying control (LPV) technique. The missile plant model is char-
acterized by a Linear Fractional Transformation (LFT) representation. The synthesis task is
conducted by exploiting new capabilities of the LPV method: firstly, a set of Ha/H, criteria
defined channel-wise are considered; secondly, different Lyapunov and scaling variables are used
for each channel/specification which is known to reduce conservatism; and finally, the controller
gain-scheduling function is constructed as affine matrix-valued function in the polytopic coor-
dinates of the scheduled parameter. All these features are examined and evaluated in turn for
the missile control problem. The method is shown to provide additional flexibility to tradeoff
conflicting and demanding performance and robustness specifications for the missile while pre-
serving the practical advantage of previous single-objective LPV methods. Finally, the method
is shown to perform very satisfactorily for the missile autopilot design over a wide range of
operating conditions.

Key words: missile autopilots, LPV synthesis, LET, mixed Hy/H,, multi-channel control, gain
scheduling.

1 Introduction

Gain-scheduling techniques and LPV control theory have been used extensively for the synthesis of
non-linear controllers and especially in designing missile autopilots [14, 17, 20, 21, 5, 19, 22, 23].
Despite this popularity, missile autopilot design remains a challenging control problem since it op-
erates over a wide range of flight conditions and tight design specifications are generally prescribed.
A consequence is that fast on-line controller adjustment is necessary to achieve this goal.

Classical gain scheduling is typically based on a family of linear controllers designed on a set
of plant equilibrium conditions [11, 15, 18]. Modern optimal and robust control techniques can be
employed to locally satisfy several robustness and performance specifications. A transition law is
then established to switch or interpolate the resulting set of Linear Time-Invariant (LTI) controllers
according to the evolution of the (on-line available) scheduling variables. This approach often
generates alterations of the LTI stability /performance properties when non-stationary maneuver
are investigated. Unfortunately, the loss of performance cannot be measured at the synthesis level
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and extensive simulations are required to evaluate the closed-loop behavior for a rich enough set of
potential trajectories. Moreover, when scheduling variables have fast dynamics, the number of LTI
controllers must be considerably increased to ensure satisfactory non-stationary performance, hence
the practical restriction of the scheme.

In contrast to these techniques, the LPV framework provides elegant and solidly founded method-
ologies to meet design specifications over wide operating ranges. Control problems are formulated
as Linear Matrix Inequalities (LMI) optimization problems [7, 10], which are then solved very
efficiently using currently available semi-definite programming codes. Many techniques are now
available to handle the gain-scheduling problem. Among these, some assume an LFT plant repre-
sentation [13, 2], while others are much more general [4, 24, 1|. Several variants have been proposed
to improve these original approaches. A current research direction consists of seeking methods which
provide a reasonable compromise between the conservatism of LFT-based techniques and the more
sophisticated general LPV approaches.

In [3] a technique for solving mixed Hs/H, multi-channel LFT/LPV control problem in discrete-
time has been derived. It can be viewed as an extension of LET/LPV single-objective results in
[2, 13] and of nominal multi-objective techniques in [9, 16]. A practically interesting capability of
this method is to offer additional flexibility to tradeoff various performance and robustness spec-
ifications. Similarly to the LTI case, different Lyapunov and scaling variables are used for each
channel/specification to reduce conservatism as compared to earlier methods. In this paper, we
discuss its applicability to a realistic LPV missile autopilot design. We show how the method can
be used for discrete- or continuous time LPV systems. We paid a special attention to the controller
construction and implementation which are of prior importance in missile problems.

The remainder of the paper is organized as follows. The problem statement and a brief review
of the results in [3] are presented in Section 2. In Section 3, useful and practical techniques for the
discretization of continuous systems and for the computation of polytopic coordinates are developed.
In Section 4, we investigate the application to the missile autopilot problem and discuss how the
multi-objective/channel features of the LPV method are central to achieve good design properties.
Concluding remarks are given in Section 5.

The notation used throughout the paper is standard. M7 is the transpose of the matrix M.
For Hermitian or real symmetric matrices, M > N means that M — N is positive definite and
M > N means that M — N is positive semi-definite. z(k) is used to denote the signal z at
P, P
Py Py
inverses exist, Fy (P, A) = Pyy+ Py; A(I — Py A)~! Piy defines the upper LFT operator and similarly
Fi(P,A) = Py; + PioA(I — PyoA)71 Py defines the lower LFT.

(discrete) time k. For an appropriately dimensioned matrix P = [ ] and assuming the

2 Multi-objective LFT/LPV result

In this section, we state the multi-objective LPV control problem and give a brief overview of the
synthesis method in [3].
Consider a discrete-time LPV plant with LFT structure

za (k) _ | Ca Daa Dar Daz| | wa(k)
z(k) | Ci Dia Diu Dy w(k) |’ (1)
y(k) Co Dan Dy 0 u(k)

wa (k) = A(k)za(k),



where A € R™™" A(k) € RV*N Dy € RP1*™2 and Dy € RP2X™ define the problem dimension.
The notation for signals is standard:

e g for the state vector,

e w for exogenous inputs,

z for controlled or performance variables,
e 1 for the control signal,
e y for the measurement signal.
A(k) is a time-varying matrix-valued parameter evolving in a polytopic set P p , with
Pa :=co{A,..., ..., AL} 20, (2)
where co stands for the convex hull and the A;’s denote the vertices of P . That is,

L

L
A= Z OAZ'AZ', ZO{Z' = 1, (3)
1=1

=1

where a; > 0 are the polytopic coordinates of A. Polytopic coordinates are computed in real time as
functions of the scheduling variables (Section 3) and can be exploited by the controller. According
to our definitions, the pair (wa, za) is the gain-scheduling channel.

For the LPV plant (1) the gain-scheduling control problem consists in seeking an LPV controller
with LFT structure

rr(k+1) Ax  Bg1  Bga zx (k)
u(k) = | Ck1 Dku Dkia y(k) |, Ag € R™Xn
zk (k) Cka Dka1r Dran] [wk(k) (4)
wi(k) = Ag(k)zg(k), Ag e RV,

such that Hy and/or H, specifications are achieved for a family of channels (wj, 2;), 7 = 1,2, -,
where the w;’s and z;’s are sub-vectors of w and z, respectively (Figure 1). In other words, bounds
vj on the variance of the outputs z; and/or bounds <y; on the Lp-induced gain of the operator
mapping w; into z; are guaranteed for all parameter trajectories A(k) € P . The notation A is
used for the controller gain-scheduling function which is a function of the plant’s parameter A, that
iS, AK = AK(A)

In this application, we consider the special situation in which A has a block-diagonal structure
determined by a vector of parameters 6 := (61,---,60,)! with

A = diag(61 1, -, 0, 1;,) - (5)
Also, we assume that 8 evolves in a box defined as
0[ € [Ql’ él]a Ql < él, Vit > 0. (6)

The assumptions (5) and (6) mean that:
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Figure 1: Mixed Hy/H, multi-channel LPV interconnection

e the time-varying parameter 6 is valued in a hyper-rectangle Pg of R", with
P :=co{O1,...,0r} , (7)
where the ©;’s are the vertices of Pg;
e A and 0 have the same polytopic coordinates {«;};
e L=2"and N=>_,s.

Hereafter, i (= 1,---, L) indexes the vertices ©; and A;, j (= 1,2,---) indexes the channels and
specifications, and | (= 1,---,7) indexes the parameters.

It is shown in [3] that sufficient conditions for the existence of a solution to the multi-objective
LPV control problem can be written as an LMI program. The general synthesis scheme is described
below.

Algorithm 2.1 Controller synthesis

Step 1: Define the following general non-symmetric decision variables which are common to all
specifications and channels (Table 1):

e the set S, of general slack variables; the set K, of transformed controller variables, whose
dimensions must be defined in according to the controller dimensions; and the set Ay
of scheduling function coefficients.

Step 2: For each Hy-channel, define the set Ha, of the following symmetric decision variables:

e Lyapunov variables (X2j and Zj); scaling variables (Q1j, Q25, R1j and Raj); and a
performance variable (v;).

Step 3: For each Hy,-channel, define the set Hooqy of the following symmetric decision variables:

e a Lyapunov variable (Xooj); scaling variables (Qooj and Rooj ); and a performance
variable (7;).

Step 4: For each channel/specification, construct the LMI constraint system derived in Appendiz
A of [3] and represented here by the simple notations below:

4



Table 1: Decision variables

Set ‘ Variables ‘ Dimension ‘ Number of scalar variables
Sv U, Vi1, Wiy nxn 3n2
M, N, Ey1, F11, G11, Hiy N x N 6N2
K Ak, Bki, Bka, Ck1, Cka, appropriate n? 4+ N? 4+ 2nN+
? Dki1, Dki1a, Dka1, Dxaa (n 4+ N)(mg 4 p2) + mapy
Ak Agii=1,---,L N x N LN?
X2j 2n X 2n n(2n +1)
Hao Zj P1j X P1j p1j(p1j +1)/2
Q1j, Q2j, Rij, Ra;j 2N x 2N AN(2N +1)
vj scalar 1
Xooj 2n x 2n n(2n +1)
Heoo Qooj; Rooj 2N x 2N 2N(2N +1)
Vj scalar 1

e Hy performance:
*CHQ(S’uaK'vaAK’UaH?U,Ai,[y) <0 (8)

o H, performance:
ﬁHoo(SvaKv,AK'UaHoovaAian) <0 (9)

where P; is the set of state-space matrices representing the LPV plant (1) with only the
channel/specification (w;, z;) under consideration.

Step 5: (LMI optimization problem) - Minimize a specific performance variable «y; or v; subject to
the LMI constraints (8)-(9), fizing the remaining performance variables at some adequate set
of values; or simply compute a feasible solution to the LMI constraints (8)-(9).

Step 6: As described in [3], compute the LPV controller data (4) as functions of the decision
variables (Table 1) obtained in Step 5. Note that the set K, (bold notation) does not represent
the set of controller data. The controller gain-scheduling function is determined by

L

AK(A) = Za,@i, (10)
i=1

where the ®;’s can be computed off line as functions of the decision variables.

Remark: The introduction of general matrix variables (Sy) and of linearizing transformations
variables (K, ) allows the use of multiple Lyapunov functions and scalings and leads to a full LMI
characterization of the LPV control problem. The price to pay for these new capabilities comes
in terms of an extra computational overhead in the synthesis step. The matrix variables whose
dimensions depend on N increase considerably the dimension of the overall decision vector in the
LMI problem (see Table 1) and appears as a limitation for problems of large dimensions with today
semi-definite programming solvers.



3 Discretization and polytopic coordinates

In this section, techniques for the discretization of continuous-time systems and for the computation
of polytopic coordinates are discussed. They will be used in the missile application (Section 4).

3.1 Discretization

While genuine extensions of the foregoing method to the continuous-time case remain challenging,
it can be indirectly applied to continuous plants with the help of a formal bilinear transformation.
Continuous-time controllers can be synthesized since Hy problems are properly posed in continuous
time.
The bilinear transformation between the s-domain and z-domain
1 z4+1

;:z—l (11)

can be written in the standard LFT form as

s = T+V2I 271 (I—21) ' VoI = Fu(B,z '),

where F,, is the customary notation for upper LFTs and B = [ NGT:

Now consider a continuous-time system

Lo(t) + B (12

P(t) Cux(t) + DE(t)
whose transfer matrix is
- .. N -
P(s) = D+C (sI - A) B = F (G,s—lf) , (13)
x A B o : : :
where G := [ &b ] . Then the corresponding discrete-time system is obtained as
5 2+1 5 -1 -1
P(z) = Fu(G.Z5T) = Fu(GFRB2TD) = FulG2'D), (14)
where y
B ~
G:= [ c D ] = Fu(G,B) (15)

represents a state-space realization of P(z). A transformation from the z-domain to the s-domain
can be obtained similarly. Hence, a discrete-time system represented by G has a corresponding
continuous-time system represented by

N, (16)

Supposing now that £(t) := [wk (¢), w?(t), T (@) and ¥ (t) := [2X(2), 2T(¢), yT(#)]" in (12),
a corresponding discrete-time system in the form (1) is readily obtained by applying the bilinear

transformation (15). Since Hy problems are properly posed in continuous time, the methodology
described in the previous section can be applied without restrictions to the transformed system. For

G = Fu(G. B), B:[ I ‘/ﬂ].



the Hy performance index v; to be well defined in continuous time, the state-space data must be
such that the closed-loop feedthrough term of the channel/specification j is zero. Without imposing
restrictions to the controller, this is achieved with Dnj = 0 and either D aj = 0 and 1312]- =0or
bAlj =0 and .521]' = 0.

It is well known that bilinear transformations applied to rational strictly proper transfer functions
generate non strictly proper transfer functions. See the example of a pure integration in (11).
However, there is no restrictions on the feedthrough matrices for defining Hs specifications in discrete
time and our method remains applicable.

Once the LFT discrete-time controller has been computed, one can use the transformation (16)
to recover the corresponding continuous-time controller. It is worth mentioning that only the LTI
components of the LFT plant and of the LFT controller are modified by bilinear transformations,
whereas the A- and Ag-blocks remain unchanged.

3.2 DPolytopic coordinates and hypercubes

Modern flight control systems undergo highly maneuverable trajectories which requires a fast con-
troller update. Controllers designed through general LPV /gridding techniques [4, 24, 1] show little
conservatism but require more complex on-line computations at the gain-scheduling level. Con-
trarily, LFT/LPV controllers are often more conservative but their favorable LF'T structure offers
obvious advantages in this respect. In comparison with the single-objective Ho, LFT/LPV control
methods [2, 13|, the foregoing mixed Hs/Ho, multi-objective approach allows to consider a richer
class of scheduling functions (10), instead of replicating the parameter block of the plant (Ag := A).
This is another factor which reduces conservatism and that is immediately penalized by an increase
in complexity of on-line computations. Fast algorithms for the calculation of polytopic coordinates
should therefore be utilized in order to overcome this difficulty.

For a parameter evolving in a hyper-rectangle, barycentric coordinates can be directly and
quickly computed by ratio of hyper-volumes. Consider the two-dimensional example depicted in
Figure 2, where 6y € [—5,3] and 62 € [5,10]. The vertices of the parameter box are

{©1,--+,04} = {[-5,5]",[3,5]",[-5,10]7, [3,10]} .

Any point € into this parameter domain can be used to define 4 sub-rectangles whose areas are Vj,
[ =1,---,4. Note that V; corresponds to the sub-rectangle opposite of ©;. Polytopic coordinates
of 8 can be computed in terms of the ratio between each area V| and the total area V = Zle V.
That is,

4
v
al:Vl, I=1,---,4, with 0= o0.
=1

As an example, the point # = [-3, 7]7 can be represented by its polytopic coordinates

_[18 6 12 4

T
— — = | =045, 0.1 ) 17
40’40’40’40] [0-45, 0.15, 0.3, 0.1]

The following algorithm extends this procedure for general hyper-rectangles (6) with vertices in

(7):
Algorithm 3.1 Computation of polytopic coordinates
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Figure 2: Parameter domain in the space R?

Step 1: Given a parameter 0 := (01,---,0,)T, compute its normalized coordinates
6, — 0
W ::(_171), I=1,---,r.
(6 — 6,)
Step 2: For each verter ©;, 1 =1,---, L, compute the corresponding polytopic coordinates

T
o = ~ [ 9, if 6, isa coordinate of ©;;
@i = ll—Ilﬁl » where ¥ = { 1—19;, if 6, isa coordinate of ©; .

Then, computing polytopic coordinates from measured rectangular coordinates is not a costly
procedure. It can be readily performed on line through simple operations basically consisting in (r)
scalar normalizations and (L7 — L) scalar multiplications.

Since the matrix polytope P p is considered as a hypercube, a practical interest exists in central-
izing it at 0. It can be shown that solutions Ak ; associated with opposite points of the polytope are
also opposite of each other. As a result, the solution family {Ax j}i—1,..,r determine a hypercube
with a similar arrangement as the original hypercube {Ai}izl,_", - Two consequences of this result
can be inferred: first, the number of inequalities in (8) and (9) can be reduced (see [3] for details);
secondly, because the matrices ®; in (10) are linear in A; and Ak j, they enjoy the same properties
as Ak ; and half of them should be stored for gain-scheduling. We shall take advantage of this
property in the missile autopilot problem.

Indeed, any hyper-rectangle can be transformed into a hypercube centered at 0 by translation
and scaling. It is easily shown that for any parameter in (6) defined as

0, = (S0 + 1, (17)
with the scaling S; = b ;Q; and the translation 7} = 9;;@1’ a corresponding parameter
0 — T,
0 =L~ 18
=23 (19)
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ranges between —1 and 1. Since A is diagonal and linear in 6;, one can deduce from (17) and (18):
A'zn = SAzA + Tza or wh = Swa +Tza , (19)

where
A'=SA +7T = diag(elljsu e aevlﬂISr) 3

S = diag(S11s,, -+, S Is,) and T =diag(Thls,, -+, T 1s,) .

Equation (19) is graphically represented by the interconnections depicted in Figure 3. The LFT
Fu(P'(s),A"), where A’ evolves in any hyper-rectangle, can be then transformed into the LFT
Fu(P(s),A), where all parameter trajectories lie in a normalized hypercube centered at 0. In fact,
A depends on # which has entries ; € [—1, 1].

4 Missile control problem

In this section, we apply the technique presented in Sections 2 and 3 to a realistic missile gain-
scheduling autopilot problem. This problem consists in controlling a missile to track commanded
normal acceleration 7.(t), by generating a commanded tail fin deflection d.(¢). The nonlinear missile
model and actuator dynamics are borrowed from [14, 12].

4.1 Missile model

The pitch-axis missile model involves the angle of attack «f(t), the pitch-rate ¢(t) and the tail
deflection angle §(¢) and its derivative §(¢). Normal acceleration 7(t) and pitch-rate are measured
outputs. A quasi-LPV description of the missile and actuator models is given by:

& Z, 1 Z5 0 o 0

il | Ma0 M 0 q 0

sl = o o o 1 s |t o [%

6 O ) 2

) | 0 0 —wg Cwa__ 0 wg (20)
(0]

n] _ [Ne O Ny 0]]q

gl =l o 1 0 o 5|
0
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Figure 4: Control structure and synthesis interconnection

with:
Zy = KoM cosa (ana2 + bpla| + cn(2 — M/3))
Zs = KyMcosad,
My = KyM? (ama® + bplal + cm(—7 +8M/3)) (21)
M; = K,M?%d,
No = K,M?(an0?+byla|+ ¢, (2 — M/3))
N; = K,M?d,.

The above nonlinear description represents a missile flying at an altitude of 20000 f¢. Numerical
data and units of ap,, b, cm, dm, an, by, cn, dn, Ko, Kq, K,, w,, and ( are given in [14, 12]. The
plant dynamics can be parameterized by 0(t) = [a(t), M(t)]T, where the Mach number M(t) is
an exogenous variable which is treated here as an uncertainty. We consider that only the state
variable «(t) is available for scheduling purposes. In fact, the parameter channel can be split into
two channels by defining za := [z1, 2T,]T and wa := [wl, wl]T. Due to the missile symmetry
about a = 0, controllers are designed for oo > 0 and scheduled on |a].

4.2 Control and synthesis structures and performance objectives

The performance and robustness specifications for the closed-loop system are similar to those
detailed in [23, 12]. Our aim is to maintain robust stability over the entire operating range,
a € [—30,30] degrees and M € [2,4], and to track step commands in 7. with time constant no
more than 0.35 sec, maximum overshoot of 10%, steady-state error less than 1% and an adequate
high-frequency roll-off for noise attenuation and withstand neglected high frequency dynamics and
flexible modes. In order to avoid saturation of the actuator, the maximum tail deflection rate for
1g step command in 7, should not exceed 25 deg/sec.

We adopt the closed-loop control structure depicted in Figure 4. The LFT missile model
F.(G(s),A(0)) is derived from (20) and (21) in Appendix A. In order to utilize the approach

10



discussed in this paper, we express the performance objectives by choosing appropriate weighting
functions. The precompensator W;(s) is used to achieve the command shaping. The weighting
functions W (s) and W,(s) := diag(W/(s),0.01) penalize the tracking error and W,,(s) incorporates
bounds on the norm of unmodeled dynamics and also reflects magnitude restriction on the control
signal.

Hence, the specifications above can be met by a controller K(s) together with its scheduling
function Ag(6,) which:

e minimize the Lo-induced gain s of the operator mapping zjs into wyy,
e maintain the variance of z, due to the disturbance 7. below an appropriate bound v,, and
e guarantee an upper bound 7y, on the Ls-induced gain of the operator mapping 7. into z,,

for all trajectories a(t) € [—30,30] degrees.

Then, this problem can be solved by running Algorithm 2.1 and consists in finding an adequate
compromise between three conflicting objectives over the entire operating range: one Hy and two
H, specifications. Note that such a problem cannot be solved by earlier LPV methodologies for
plants described by LFT representations.

The discrete-time synthesis plant P(z) and the final continuous-time controller K(s) are com-
puted through bilinear transformations, respectively from P(s) and the designed K (z), as indicated
in Section 3.1. The continuous-time synthesis plant P(s) is readily obtained from the connections in
Figure 4 and incorporates the missile model G(s) and the weighting functions, W;(s), W(s), We(s),
and Wy (s). These frequency-dependent weights have been tuned by performing a few trials-and-
errors of synthesis and simulations for the nominal plant. That is, an LTI plant model obtained from
the linearization about the point § = [0, 0]7, (« = 15, M = 3), and an appropriate compromise
between v, and -, has guided our weight selection. This has been carried out by using the same
synthesis methodology described in Section 2 with A = 0. Notice also that the adopted frequency
shapes for the filters are fairly standard (Figure 5). Their state-space representations are given

below:
. ED ~ [-140 1.0] [

Wils) ] T | 140 0.0] |:770:| :
[ Ze, | [ —138.42 —604.32 128.07 [z,

Wis) @ |de | = 16.00 0.00 000 | |z, | , (22)
[ Ze, | | 2142 193.12  0.106 | | ue,
E [—2.9132e +5 —4.923¢ +6 2.0972e + 6] [z,

Wu(s) = |du, | = 8192.0 0.00 0.00 Ty
EX | —1.2742e +5 —2.154e+6 9.1757¢ +5 Se

4.3 Results and simulations

In order to put in light the potentials of our multi-channel LPV synthesis method and to allow
comparisons, we have considered two designs. The first LPV controller, K;(s) and Ak, (6,), has
been synthesized considering M as a constant (= 3); the second one, Ks(s) and Ak, (6,), considers
M as a bounded uncertain parameter (M € [2,4]). In short, we have used the following strategy to
compute these controllers:

11
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Figure 5: Frequency responses of the weighting functions

o Ki(s) and Ak, (0,):

— Starting with a small value v,, synthesize controllers which minimize the Hy, performance
Y4 subject to a Ho constraint ./ve.

— Through successive relaxations in v, find a reasonable compromise between these ob-
jectives. To check out when a good balance has been achieved, perform non-stationary
(a(t)) and nonlinear simulations for M = 3 and evaluate the closed-loop performance in
the time domain.

o Ky(s) and Ag,(0s):

— As mentioned in the previous subsection and analogously to K (s), minimize yps subject
to the constraints -, and v,.

— Starting with the final values -, and v, obtained in designing Kj(s), relax them alter-
nately in order to find an adequate balance between the three objectives.

It must be emphasized that the LFT missile representation derived in Appendix A is not minimal
with respect to the angle of attack «. In fact, the A-block can be reduced from order 12 to order
10, (A = diag(0414,05 1)) without any loss of accuracy in the model. We have used numerical
techniques based on controllability and observability conditions and on singular value decomposition
proposed in [8, 6] to obtain a reduced LFT representation. Note that the synthesis plant P(s) has
order 10 and generates controllers K(s) of the same order and autopilots of order 12. For this
application, the LTI components of the overall LPV controller are stable but exhibit very fast modes
which can be detrimental to on-line implementations. They can then be decomposed into the sum of
a fast- and a slow-dynamic subsystems represented by the state-space matrices (Ay, By, Cy,0) and
(As, Bs, Cs, Dy), respectively. The fast-dynamic part of the controller has been approximated by a
static gain in the form of a feedthrough matrix (Dy = —Cf(Af) "' By). Therefore, final controllers
K (s) have order 7 and the state-space representation (A, Bs,Cs, Ds — Dy). Numerical data for
K5 (s) and its scheduling function coefficients ®;’s are provided in Appendix B.

12



Table 2: Hy and H, performances

Contr. | Ve Yu M
K, Ak, | 6.0 08 —

Ko, Ak, | 150 3.0 6.56

Values of Hy and H,, objectives for both LPV controllers are listed in Table 2. Nonlinear
simulation results for fixed values of M are displayed on Figure 6. Figure 7 shows nonlinear sim-
ulations for time-varying M (t). The input is a sequence of step commanded acceleration 1, whose
amplitudes have been chosen such that the parameter a covers most of the scheduling range, thus
inducing significant variations in the aerodynamic coefficients. As in [12, 23|, the Mach number
time trajectory has been generated by

M = - [~Jn]sinla]) + 4, M? cos(a) (23)
8

with M (0) = 4 as a realistic Mach profile. Numerical values and units of vs; and A, are detailed
in [14, 12, 23]. As theoretically expected, all performance objectives are met for all considered
trajectories when (K9, Ag,) is employed for controlling the system. In contrast, the desired closed-
loop behavior is satisfied only at the central point (M = 3) for (K1, Ak, ). We recall that (Ks, Ak, )
has been computed in order to ensure robustness with respect to variations in the Mach number
through an extra Hy constraint on the Mach channel M. From the later result, the advantages of
using this multi-objective LPV synthesis method became evident.

5 Conclusions

We have discussed a multi-objective/channel Hy/Hy, LPV control technique for the design of a
missile autopilot over a broad range of operating conditions in both the angle of attack and the
Mach number. The proposed method provides additional flexibility to handle various and stringent
specifications attached to the missile problem while maintaining the same operational simplicity as
earlier single-objective LPV techniques:

e the missile nonlinearities are captured through the use of an LFT representation,

e different channels are defined to translate tracking performance, control limitation and ro-
bustness properties,

e balancing the different design requirements is carried out in a very natural way within the
proposed design framework and conservatism is kept reasonable thanks to the use of different
Lyapunov and scalings for each channel/specification,

e also, we describe simple schemes to construct the controller scheduling function and show how
all these manipulations carry over the continuous-time case.

The determination of a full genuine continuous-time methodology remains, however, challenging
and future research should be oriented in this direction. Also, we think that other practical reasons
might dictate the use of observer-based LPV controllers. This is a delicate and seemingly untouched
topic that will be considered in a future study.
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A Appendix - LFT parameter-dependent missile model

The missile plant in (20) is approximated by the upper LFT parameter dependence F,(G(s), A(9))
in Figure 8, where G(s) is the LTI plant involving the missile rigid body G’(s) and the matrices

_ TaI6 0 . SaIﬁ 0
T—[ 0 TMIG] and S—[ 0 SMI()‘]’ (A-1)

which correspond to a translation and a scaling. Then A(6(t)) is a diagonal operator specifying
how the normalized parameter 8 enters the plant dynamics:

O (1)1, 0
A(O(t)):[ 0 6 9M(t)16]' (A-2)

The following assumptions have been made to obtain the LFT plant model:

e angle of attack |a(t)| = Sa04(t) + To, where |6,(t)| < 1, V& > 0, and the constants T, > 0
and S, > 0 (in degrees) are used to appropriately restrict the parameter range as in (17);

e similarly, Mach number M (¢) = SnOp(t) + Tar, with |Op(2)] < 1, VE > 0, Thy > 0 and
S > 0;

a(t)|~Ta M(t)—TM] T
Sa ’

e as in (18), the normalized parameter is 0(t) = [ T

e cos(a) is approximated by 1 — o?/2 with a maximum error of 0.36% over the range |a| < 30
degrees.

With these simplifications, the state-space model of G'(s) is completely described as:

Coy Dgg Dy, ]

G'(s) := [ c, ] (sT —Ag) ! [ By By |+ [ Dy Dy (A-3)

with the state vector z, = [a, ¢, 0, 6]T and
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B Appendix - LFT controller data

The final controller (K3, Af,) is described by the following state-space data and gain-scheduling
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[ —35.369 —164.39 0.3279  —29.321 —48.583 —4.6766 0.6184
164.48 —96.323 7.21589 —37.636 —136.86 —10.861  1.3651
0.2290 —7.1549 —0.0112  0.4713 0.6386 0.0497  —0.0040

Ag = 29.701  —-39.039 —0.5076 —18.542 —112.53 —7.3457 0.9094 ,

—48.626  137.32 0.5342 113.98  —307.74 —54.307 7.4718

—5.0085  11.760 0.0613 7.9718  —58.257 —99.534 67.391

| —1.7821  4.1619 0.0240 2.8059 —21.310 —87.785 —49.757

956.21  —4.4202  0.0001 0.00003 —0.0004  0.0062
—1114.6  6.3520 0.0006 0.0007  —0.0008  0.0164
—4.9757  10.074 0.0031 0.0046 0.0028  —0.0271
B, = -317.93 —1.4891 —0.0014 —0.0017 0.0018 —0.0392 | ,

697.47  —-3.5028 —0.0002 —0.0002 0.0003 —0.0063
67.814  —0.7953  0.0002 0.0002  —0.0003  0.0067

24.080 —1.4741 —0.0000  0.0000 0.0000  —0.0004

r 17.078  —39.016  0.4518  —18.593  39.561 9.7018  —2.9175
—34.502 —49.971 —6.2874 —50.521 —25.923 —6.3236  1.1467

Cr, = —108.53 —141.61 —4.6665 —72.008 —81.963 0.6421  —11.448 | ,

944.96 1098.2  —6.1213  304.84 687.50 65.171  —11.355

90.247 111.18  —5.2219  8.2498 69.762  —14.754  17.669

r 0.6781 —0.0031 —0.0000 —0.0000 0.0000  —0.0000
—211.02  0.5030 0.0381  —0.0221 —0.0099 —0.2526

Dg. = —167.65  0.6268 1.2180  —0.0884  0.0027 0.0710 ,

—1067.8  1.4150 —0.4489 0.1926  —0.4524  11.267

| —179.32  0.0247 —0.0355 0.0109  0.0103  0.0097
with

2
Ag,(A) = E o;®;

i1

where
—0.8162 —0.0536 —0.0310 —0.4511

—0.0921 —0.9155 —0.0556 —0.4774
P =—P2 =
—0.0715  0.0268  —0.8941 —0.5415

—0.0049  0.0017 0.0096  —0.9759

and a1 and ag are computed on line using Algorithm 3.1.
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