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Abstract

Parameterized Linear matrix inequalities (PLMIs), that is LMIs depending on a
parameter confined to a compact set frequently arise in both analysis and synthesis
problems in robust control. As a major difficulty, PLMIs are equivalent to an infi-
nite family of LMI constraints and consequently are very hard to solve numerically.
Known approaches to find solutions exploit relaxations inferred from convexity argu-
ments. These relaxations involve a finite family of LMIs the number of which grows
exponentially with the number of scalar parameters. In this paper, we propose a novel
approach based on monotonic optimization which allows us to solve PLMIs via a fi-
nite and of polynomial order family of LMIs. The effectiveness and viability of our
approach are demonstrated by numerical examples such as robust stability analysis
and Linear Parameter Varying synthesis for which we clearly show that no additional
conservatism is entailed as compared to earlier techniques.

1 Introduction

A central problem in robust control theory is to check the quadratic relation (see e.g.
[5, 1, 12])
fl@)=a"Qa+qa+p<0,Vacl:=][ab € RY, (1)

where @ is a L x L symmetric matrix, ¢/ € (R¥) and p € R. T denotes a hyper-rectangle
in the positive orthant of R”, i.e.

F::{QERL:OSaigaigbi}.

As it is known, a natural relaxation approach for checking (1) is to enforce some
additional conditions on f so that it can be checked only by verifying the inequality at
the vertices of the hypercube I' that is on vertI. This way, an exponential number (2)
of LMI constraints have to be solved. This is easily derived via convexity concepts since
one of the most fundamental property of convex functions is that their maximum over the
convex set I' is attained on vertI'. As an instance, the convexification result of [5, 1, 12]
states that (1) holds whenever there exist scalar y; > 0, i = 1,2, ..., L such that

L
fla) < fla) = f(a) + Zuia? <0, Ya € vertl’ (2)
i=1
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and function f is multi-convex, that is, is convex along all directions ¢’ = (0,0, ..,1,0,...,0)
(canonical unit vector in R”). More formally, this is expressed as

0*f(e)
0%q;

In the same vein, one can take advantage of other properties of the box I' beyond
convexity. The box I' is not only convex but is characterized by a specific ordering: its two
vertices a and b are smallest and largest, meaning that a; < a; < b;, Va e, i =1,2,..., L.
This condition is useful in the sense that not only convex functions attain their maximum at
the vertices of I but there are other functions not characterized by any kind of convexity
attribute which also meet the extreme point property. They are monotonic functions.
Moreover monotonic functions attain their maximum/minimum on one of the smallest or
largest vertices a or b. Therefore, it seems that for considering a function f on a box it is
of practical interest to explore its monotonicity properties. In this paper, we shall see how
the monotonic concept is useful and maybe more natural for solving (1). In particular,
it allows us to reduce the feasibility of (1) to the feasibility of a finite and of polynomial
order family of LMI constraints.

The structure of the paper is as follows. Basic results on monotonic optimization for (1)
are considered in Section 2. Derivation techniques for various problems in robust control
are discussed in Section 3. Finally, the viability of the proposed approach is demonstrated
through some numerical examples in Section 4.

The notations used in the paper is rather standard. Particularly, M > 0 (M > 0,
resp.) for a symmetric matrix M means that M is positive definite (positive semidefinite,
resp.). Analogously, M < 0 (M < 0, resp.) means that M is negative definite (negative
semidefinite, resp.). The symbol * is used as an ellipsis for terms in matrix expressions that
are induced by symmetry, e.g., [M + N]+ (*) = [M + N]+[M + N]*. For z € R,y € R,
z < y must be understood componentwise, i.e. z; < y;, ¢ = 1,2, ..., L. Let us also recall
that a function f : ' — R is increasing if and only if f(z) < f(y) whenever a <z <y < b,
and is decreasing if and only if f(z) > f(y) whenever a <z <y <b.

= Qi + i > 0, i=1,2,...,L. (3)

2 Basic monotonic optimization result

For simplication, we introduce the positive scalar:

L

T = Z(bZ —a;).

i=1
The following lemma will be our main instrument in the next derivations.

Lemma 2.1 The quadratic inequality (1) holds true whenever one of the following con-
ditions 1is satisfied
(2) f(b) <0 and either

L
THO _ irgei — g <0, 1<i<j<L,
80&1‘80@'



or

0f(a) iT L
5 = 2¢ QG+Qi=2ZQijaj+qz'20, 1=1,2,..,L
(67} —
ofatret) 5)
T =2) Qo+ 4 +2rQu >0, i0=1,2,..L
7

7=1
(i) f(a) < 0 and either

af (b . L '
g(.):261TQb+Qi:22Qijbj+QiS0a i=1,2,..,L
o = ©)
/(o) =eTQe! =Q;; >0, 1<i<j<L.
8041-8043-
or .
7 =
Of (a + reb) L _ (7)
e = 2X Qi @i+ 2rQue <0, il =12, L

j=1
If f(a) <0 and

0f(a) iT <

5 =2¢"Qa+¢q =2 Qija;+q <0, i=1,2,..,L

- = (8)
0T _ Qe = @y <0,  1<i<j<L
aaiaaj

then f(a) <0 Va > a.

Proof. To prove the first statement we shall show that f is increasing on I'. By the mean
value theorem it suffices to show that ﬂga%l >0, V o € T under conditions (4) or (5).
Note that

of (a -
g((ll) =2¢"Qa+ g (9)
and thus ag(()z_‘) is decreasing and aaf—(il:,) > 0 under condition (4). Hence, %&oj‘) >0,Vael.

Under condition (5), %%l is nonnegative on the simplex with the vertices {a, a +
ref, £ =1,2,..., L} that contains the box [a,b]. Therefore aaf—c(s) > 0 Va € [a,b] showing
that f is increasing on [a, b].

For the proof of the second statement note by an analogous argument that both (6)
and (7) guarantee that f is decreasing on I', while (8) makes f decreasing on [a, +00].

O
Now we “monotonize” f(«) on T, i.e. we find a monotonic function
fla) =a"(Q+Q")a+ (¢+¢")a+p+p" (10)
with QM € REXL a symmetric matrix, ¢™ € (R*)T and p™ € R, such that
fl@) < fla), Vael (11)



and thus (1) is implied by f(a) < 0, V a € I'. Obviously, (11) holds true whenever either

or
L
QMo+ Mo+ pM > eZ(ai —a;)(b; — ), Yo € RY
i=1
L
= QM4 el >0, ¢M —€ela+b) >0, pM—FGZG/Z’biZO,EZO (13)
i=1

and an improved version of Lemma 2.1 is the following.

Theorem 2.2 (1) holds true if there are QM, g™ ,pM satisfying one of conditions (12),
(13) and moreover one of the following conditions is additionally fulfilled.
(¢) f(b) <0 and either

L

(14)
QW+QM<0 1<i<j<L,
or
L
o (15)
Z(QZ] + Qz] ) (qz + q; ) + 2T(Qi€ + Q%) > 07 Za‘e = 1723 7L
7j=1
(i1) f(a) <0 and either
Z(QU +Qbi+ai+q" <0,  i=12,..,L (16)
Qz’j+Q£]/'IZO,1 <i<j<L
or
L
Z(QZ] + Qz] )a'] (ql + qzju) < 07 1= 1727 7L
T (17)
Z(QU + ng )a] (Qi + Qz]VI) + 2T(Qi£ + Q%) S 0
If f(a) < 0 with (12) are in force and
L
23 (Qi + Qi) + (@i +a") <0, i=1,2,.., L a8)
7j=1
Qij + QY <0, 1<i<j<L
then f(a) <0V a > a and thus f(a) <0V a > a. -



2.1 Extension to the semidefinite matrix cone

In our robust control problems, we are dealing with PLMIs of the form

L L
Qa) == Qo+ Y aiQi+ Y, Qi <0,

i=1 i,j=1

where (o, @; and @; ; are symmetric matrices and the inequality sign must be regarded
as an inequality in the cone of positive-definite matrices, namely z7 Qz < 0, Vz # 0. As a
result, for a given x a PLMI constraint can be viewed as a standard quadratic inequality
as in (1) with the obvious definitions

"LITQll-rE .’L'Tng.’E . .’L'TQle
| 2"Qur 2TQuzr ... zTQuz
Q = ’
vee vee e e (19)
xTQle -TTQQL-'L' l‘TQLL(E
g = [¢7Qiz 2TQex .. 2"Qrz], p=2"Quz

Thus we have to check (1) for all x # 0 € R™ and therefore all inequalities (1)-(18) must
be understood in the matrix sense. It follows that Lemma 2.1 and Theorem 2.2 trivially
extend to the positive-definite matrix cone by simply regarding the associated conditions
of scalar type as matrix inequalities.

For Theorem (2.2) a particular class of QM, ¢M, pM in this case is
where I is the identity matrix of appropriate size. Clearly, for such choice, (13) is guar-
anteed by

912 4922 -+ 431 +el>0
i b
M M M 21
9. 9 - 4.1 . (21)
Gi—elai+b;) >0, i=1,2,...L; p+ey_aib; >0, € >0.
i=1

From (2) and (3), we see that the convexity based approach requires checking a system of
2L + L LMIs (of ezponential order with respect to L) for (1), while the result of Theorem
2.2 requires checking a system of 1+ L+ L(L+1)/2 LMIs (of polynomial order with respect
to L). At first glance, it seems that the result of Theorem 2.2 is more conservative than
(2) and (3). It is not a case, however, and our computational examples in Section 4 will
actually show that even the result of Theorem 2.2 is less conservative than (2) and (3).

3 Application to robust control problems

3.1 p—analysis problem

We begin this subsection by stating the following intermediate result.



Lemma 3.1 The following conditions are equivalent for a matriz A of size n X n.
(1) A is nonsingular.
(ii) ATA > 0.

Proof. Let A be nonsingular. Then Az # 0 Vz # 0 and thus 27 AT Az > 0 Vz # 0 proving
the positive definiteness of AT A. Now, suppose that ATA > 0, i.e. zTATAz >0Vz #0

so Az # 0 Vz # 0 showing the nonsingularity of A. -

A general class of robust stability analysis problems can be expressed as to check whether
L

AB(c) is nonsingular for all, a € ', B(a) = By + Z a; B;. (22)
i=1

Then using Lemma 3.1 it can be seen that

(22) o BT()ATAB(a) >0, VYa el
& 30: ATA>0,B(a)"eB(a) >0, VacT
& 30: N{ON4 <0 (by Finsler lemma) (23)
and B(a)TOB(a) >0, Va €T (24)

where N 4 is any base of the nullspace of A.
A particular case of (22) is the y—analysis problem of checking whether

(uI — GA(«)) is not singular for all A(a) = iaiAi, o € [a,b) C R (25)
i=1
L
o (22) with A=[ul —G], Bla) = [Afa)] - [é] +Y o [AO] (26)

=1
and the corresponding N4 in (23) is given as
G
Na= [uI ] '
A particular case © = AT A satisfying (23) implies that it is not always natural to restrict

© with ©11(%,7) < 0 as done in the directional convexity approach [5]. Now we shall use
the concept of monotonic optimization to avoid such restriction. For this note that

Qij = —3[Bf ©B; + B ©B],

24 e W,09) Wlth{ 4= -[BOB, + BTOB), p= -Bjos. )

The result of Theorem 2.2 suitably adapted to (24) is thus.

Theorem 3.2 (22) holds true if there ezist a matriz © satisfying (23) and matrices
QZ—",qZM,pM satisfying either (12) or (13) (in the matriz sense) such that one of the
following conditions is fulfilled.

(4)
BT (b)OB(b) — XL: Q7 bibj — XL: aMb; —pM >0 (28)

ij=1 i=1



and additionally either

L
> b;(BfOB; — Q) + Bi©Bi] + () — g} <0, i=1,2,..., L,

- (29)
7j=1
(BFeB; —QY)+(x) >0, 1 <i<j <L
or
( L
> a;(BfOB; — Qi) + By OBi] + (x) — ¢/ <0, i =1,2,..., L,
j=1
e T M T T M M (30)
> aj(Bf©B; — Q) + By ©B; + 7(B 0B, — Q)] + (+) — ¢} <0,
7j=1
| 4,5=1,2,..,L
(12)
L
B(a)T0B(a Z ng a;a; — Z%Mai -pM >0 (31)
ij=1 i=1
and additionally either
T M ; g >0,i=1,2,...,L
[]zlb B@B Q )+B @Bz]+(*) q; >0, 1 y Ly eeey Ly (32)
(Bi©B; — Qi)+ (x) <0,1<i<j< L,
or
( L
> a;(BT©B; — Q) + B{OB] + (x) ¢! 20, i=1,2,..., L,
] 1
) M T M (33)
ZaJB OB; — Q;; ) +BeB; +1(B'eB, — QM+ (x) — ¢ >0,
L 7, E =1,2,..., L.
If (31), (12) and
L
T M T
[J;laj(Bz ij_Qij)+BoeBi] ( )_Qz >20,i=1,2,..,L, (34)
(BYOB; —Q}) + () >0, 1 <i<j <L
are fulfilled then (27) holds true for all a > a.
Remark. It can be easily seen that for I' = [—a,b] C RY,a > 0,b > 0 as often in the

p—analysis problem, without translating I" to Ri, the result of Theorems 3.2 and 3.3 are
still valid with only condition (12), (13) involving QM,¢™,pM slightly modified to the
following

L
QM+ el >0, ¢M =€(b—a), pM—eZaibiZO,eZO. (35)
i=1
It should be mentioned that in such case (31), (34) yield (27) only whenever a € T" but
not for all a > —a.



3.2 Robust stability

It is well known that the linear uncertain system

T = [AO + i CMZ'AZ'].T, ael = [0, l]L (36)

=1

is robustly stable if there is Lyapunov function

L
P=P+> a;P; >0 (37)
=1
such that
L L
(Ao + > i A))(Po+ > oiP) + () <OV ael (38)
=1 i=1

Qi = 5[(AiPj + A;P) + ()],
& (1),(19) with § ¢ = (Ao P + Ai o) + (¥), (39)
p:A0P0+(*)’ a= (Oaﬂa"'aﬂ)T’ b= (17]-’"'71)T

Applying Theorem 2.2 to system (1), (39) we have the following result

Theorem 3.3 System (36) is robustly stable if there are matrices Qg-[,sz,pM satisfying
either (12) or (18) such that one of the following conditions is satisfied

(4)

L L L L
(Ao + Y A)(Po+ ) P)+ N+ > Qi +> ¢ +p <0 (40)
i=1 i=1 ij=1 i=1
and either
L
D (AP + AP+ QY) + AiPy + AoP] + (+) + ¢/ >0, i =1,2,..., L (41)
Jj=1

(AiP; + AjP+Q)) + (%) <0, 1<i <j <L,

or
(AiPy + AoP) + (%) +¢M >0, i=1,2,...,L (42)
[AiPo + Ao P+ L(AiP+ AP + QM) + (%) + M >0, 4,£=1,2,..., L.
(i4)
(AoPy + () +pM <0 (43)
and either
L
7=1
(AiPj + AjPi+QY) + (x) >0, 1 <i<j <L,
[AiPo + AoP; + L(AiPy + AeP; + Q)] + (%) + ¢ <0, 4,£=1,2..., L.



If (43), (12) and

(A4iPo + AoP) + (%) +gM <0, i =1,2,..., L,
(AiPj+ AjPi+ Q) + () <0, 1 <i<j <L,

are fulfilled, then then (37 is stable for all a € Rf_.

4 Computational examples

4.1 p—computation

The following data for the u analysis problem in (25) is taken from [9]

0 1 0 1 1 00 0 0000
b 0 ¢ 0 0100 00 0 0
G=los 0 a 0o]" 0000”2001 0
0 -2 0 —a 0000 00 0 1

It known that for ¢ = 0.5, ¢ = 0.25 and b € [—5,0] the minimum gy of such p > 0
satisfying (25) is 0.5. The relaxation result of [7] for computing an upper bound of fgp
yields a conservative result (large than p,p by 10% [7, Example 1, case 2]). In contrast,
the characterizations given in Theorem 3.2 all yield the exact value 0.5 of pop:. Note that
the method of [3] also hits this value 0.5 of fugp;.

4.2 Robust stability analysis

We consider the following example borrowed from [11] where the matrix A of system (36)
is given as

-2+ (03] 0 -1+ (03] B
A(Oél, 052) = 0 -3+ (6%) 0 = A() — OélAl — a2A2 ,
—1+Oé1 —1+(,¥2 —4+a1
with
-2 0 -1 -1 0 -1 0 0 0
Ag=|10 -3 0|,A4 =0 0 O0|,A=|0 -1 0].
-1 -1 —4 -1 0 -1 0 -1 0
The actual domain of stability for A(aq, as) is
a1 < 1.7499, ay < 3. (47)

To make the result of Theorem 3.3 applicable for this case, first use the changes of variable
a1 ¢ —a1, ag < —a9 and re-express A(ai, ag) as

A(Oll, 052) == A(] + 0&1A1 + QQAQ, A() = A() - 17499A1 - 29999A2 (48)

Then, using the LMI Control Toolbox [6] it is immediate to check that LMI system (43),
(46) is feasible with all Qf‘f ,gM,pM set equal to zero. Therefore the matrix A(ay,as)
defined by (48) is stable for all ay > 0, @y > 0, confirming the true stability domain (47).



The result of Theorem 3.3 clearly outperforms existing results in [11, 1, 12] which require
a trial and error process to arrive at the final result.
Next, take the following example of 8]

-2 -2 0
A=|1 0 0 |+A4A4|AA4; <rSG,j), i,j=1,2,3;
1 0 -2

0.2451 0.4727 0.1457

0.1651 0.9394 0.5691
S = .
0.7004 0.4014 0.3141

It was guessed in [2] that A is robustly stable for » = 0.5.
Now, we can transform A to the form (36) with L =9,

-2 -2 0
1 0 0]—7"5

1 0 -2

Ay =

and all entries of matrices A;,7 = 1,2,...,9 are zeros exept

Ay(1,1) = 2rS(1,1), Ay(1,2) = 2rS(1,2), As(1,3) = 2rS(1,3),
Ag(2,1) = 2rS(2,1), A5(2,2) = 2rS(2,2), Ag(2,3) = 2rS(2,3),
A7(3,1) = 2rS(3,1), As(3,2) = 2rS(3,2), Ag(3,3) = 2rS(3,3).

Clearly, the previously developed convexity-based methods [5, 1, 12] require solving a

systems of 2L + L = 2% + 9 = 521 LMIs constraints which are not readily solved by the
existing LMI softwares such as MATLAB LMI control toolbox [6]. In contrast, for » = 0.5

applying the result (40), (41) with Qf‘f = 0,¢M = 0,pM = 0 involving total 56 LMIs
constraints gives the following feasible solutions confirming the robust stability of A,

0.090307 —0.023254  0.043219 —0.046081  0.021889  —0.025640
Py=10"* [—0.023254 0.061041 —0.010110] , PL=107° [ 0.021889  —0.033281  0.003796 ] ,
0.043219 —0.010111  0.144195 —0.025640 0.003796 —0.100189
—0.206172  0.007955 —0.075246 —0.624499 0.1656445 —0.243885
P, =1075 [ 0.007955 0.006530 —0.005840] , Ps=10"5 [ 0.165445 —0.165275  0.232036 ] ,
—0.075246 —0.005840 —0.158144 —0.243885 0.232036 —0.636828
—0.332545 0.112977 —0.181188 —0.080029 —0.037127 —0.062369
Py=10"° [ 0.112977  0.331373  0.133355 ] , Ps=107° [—0.037127 —0.051059 —0.022919] ,

—0.181188 0.133355 —0.855959 —0.062369 —0.022919 —0.134420
—0.524775  0.029002  —0.314483

P6:10—6l0.029002 —0.087495  0.028610
—0.314483  0.028610 —0.9428149

—0.301095 0.110264 —0.059123
, Pr=10"°% l 0.110265 0.151310  0.682579 ] ,
—0.059123 0.682579 —0.519952
—0.054156 —0.000801 —0.059787 —0.097658 —0.013450 —0.071830
Py=10"° l—o.ooosm —0.019287  0.012637 ] , Po=10"° l—o.013450 —0.065852 —0.006614] .

—0.059787  0.012637 —0.117466 —0.071830 —0.006614 —0.161458

10



4.3 LPYV synthesis example
The LPV model of the longitudinal dynamics of the missile are given as [10, 1, 12]

x] [ -0.89 1][$]+[ 0 —0.89] [wa1]+[—0-119]5
g ~ [—1426 0] |q 178.25 0 Wa, —130.8 | “fin
) = [0 a1 o)1)

L Was N 10 o 1 0 q

'nz] _[-1.52 0] m

L g Lo 1llg

where £, g, 1, and dg,, denote the angle of attack, the pitch rate, the vertical accelerometer
measurement, the fin deflection, respectively; and a1, ao are two time-varying parameters,
measured in real time, resulting from changes in missile aerodynamic conditions (angle of
attack from 0 up to 20 degrees).

The problem specifications are as follows:

e A settling time of 0.2 second with minimal overshoot and zero steady-sta te error
for the vertical acceleration 7, in response to a step command 7,.

e The controller must achieve an adequate high-frequency roll-off for noise attenuation
and withstand neglected dynamics and flexible modes. Magnitude constraints of 2
are also imposed to the control signal dg,,.

Moreover, those specifications must be met for all parameter values:
lai| <1, lag| < 1.

An integrator has been introduced on the acceleration channel to ensure zero steady-
state error. It turns out that the resulting LPV controller K is obtained as the composition
of the operators Ky and

240065 )
S
]

The weighting functions W, and W,, were chosen to be

0.001s% + 0.03s2 +0.3s + 1

W, =0.8 W, = :
€ ’ Y le — 583 + 3e — 252 + 30s + 10000

It is not difficult to rewrite this example in the form

z = A(ai,a9)x+ Biw + Bou
z = Ciz+ Dyiyw+ Digu (49)
y = Chz+ Dyw,

with A(a1,a9) = Ag+ a1 A1 +asAs. Then this problem can be reduced to the general LPV
control problem with guaranteed Lo-gain performance. It consists in finding a dynamic
LPV controller with state-space equations

iK = AK(aa a)xK +BK(C¥, a)y

u = Oxla,d)aex + Drla,d)y (50)

11



method achieved perf. level vy | cpu time (sec.)
DCC in [1] 0.1290 170.790
separated convexification in [12] 0.1284 256.00
d.c. convexification in [12] 0.1290 273.300
monotonic relaxation (Theorem 2.2,(ii), (16)) 0.1154 109.470

Table 1: Numerical results of LPV synthesis techniques

which ensures internal stability and a guaranteed Lo-gain bound v for the closed-loop
operator (49)-(50) from the disturbance signal w to the error signal z, that is,

T T
/ Zzdr < 72/ w'wdr, VYT >0,
0 0

for all admissible parameter trajectories a(t).

By [12, 1] this problem can be reduced to form (1) and the results of Theorem 2.2
are readily applicable. Table 1 displays the achieved performance level v for different
existing techniques. It appears that the result of monotonic relaxation (Theorem 2.2)
provide the best performance level, which is much better than those provided by other
methods. Furthermore, due to a lower number of LMI constraints, the computational time
(in Pentium 330Mhz for this example) of the former is much smaller than that required
for competing techniques.

5 Conclusions

We have demonstrated how to solve PLMIs with parameters restricted to a hyper-rectangle
by solving a finite number of LMIs which is of polynomial order with respect to parameter
dimension. From the included numerical examples, it appears that our method is not
only more computationally tractable than earlier convexification techniques requiring the
solution to an exponentional number of LMIs but also provides less conservative results.
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