
A nonsmooth progress function algorithm for frequency shaping control

design

Alberto Simões ∗ Pierre Apkarian † Dominikus Noll ‡

Abstract

In classical controller design, closed-loop performance specifications arise naturally as
constraints on restricted frequency bands. This leads to a difficult design problem, which is
currently circumvented by heuristic techniques. In this paper we discuss a new and more
rigorous approach based on constrained mathematical programming. This allows us to com-
pute locally optimal solutions to the frequency shaping control design problem. The new
technique is highly efficient, as we demonstrate by way of two case studies, a large dimension
power system, and a flexible telescope.
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1 Introduction

Frequency shaping control design consists in the simultaneous minimization of a finite family of
closed-loop performance functions

f(K) = max
i=1,...,N

‖Twi→zi(K)‖Ii
, (1)

where K stands for the feedback controller, s 7→ [Twi→zi(K)](s) is the ith closed-loop performance
channel, and ‖Twi→zi(K)‖Ii

denotes the peak value of the transfer function maximum singular
value norm on a prescribed frequency interval Ii:

‖Twi→zi(K)‖Ii
= sup

ω∈Ii

σ ([Twi→zi(K)](jω)) .

The frequency band Ii is typically a closed interval Ii = [ωi
1, ωi

2], or more generally, a finite union
of intervals Ii = [ωi

1, ωi
2] ∪ . . . ∪ [ωi

qi
, ωi

qi+1
], where right interval tips may take infinite values.
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Multi-band control design is of great practical interest since performance criteria are often ex-
pressed as constraints on specific frequency bands. Currently these bands are handled indirectly
by introducing weighting functions. This is inconvenient since finding appropriate weighting func-
tions is time-consuming and always prone to failure, and also because this increases the plant order
and thereby the controller order. Our approach dispenses with weighting functions and avoids the
indicated difficulties.

Despite its importance, only very few methods for multi-band synthesis are reported in the
literature. In [14], an extension of the Kalman-Yakubovich-Popov Lemma [18] is developed for
band restricted frequency domain constraints, but a fairly conservative convexifying procedure
is adopted. The QFT method [13] may be used to solve band limited synthesis problems, but
it is no longer suited if additional structural constraints on the controller have to be satisfied.
Similar comments could be made about synthesis based on the Youla parametrization, which
generally leads to high-order controllers [9]. Other tools, as the classical Bode, Nyquist and Nichols
plots [7,12], and more recently [20], are suited for this type of application, but are essentially limited
to single-input single-output systems, even though some multivariable generalizations have been
attempted over the years [15].

Our new multi-band synthesis algorithm is based on a nonsmooth optimization technique.
One of its principal features is that a substantial part of the computations is carried out in the
frequency domain. This allows efficient function and gradient calculations and avoids Lyapunov
variables, whose number grows quadratically with the system size. The latter is one of the principal
difficulties of approaches based on linear or bilinear matrix inequalities.

The algorithm proposed here expands on the nonsmooth H∞ synthesis method of [3]. It does
not require the management of penalty or homotopy parameters, as was still necessary in [5].
The technique in reference [5] is based on a penalization strategy, which essentially constructs
a modified objective function augmented by a penalty term of the constraint violation. Despite
its simplicity and intuitive appeal penalization and barrier strategies raise important and critical
questions as: how to initialize and update the penalty parameter? how to avoid the inherent
ill-conditioning of these techniques for asymptotic values of the penalty parameter? These issues
make the implementation of these techniques a rather difficult task. Moreover, these strategies
may lead to unsatisfactory execution times since an unconstrained nonlinear problem must be
solved to completion for each value of the penalty (barrier or homotopy) parameter.

The strategy proposed in the present work is more in line with exact penalization techniques
where solutions of the original problem are obtained with a single solve with fixed value of the
penalty parameter. In the paper, a progress function is introduced which plays the role of an exact
penalty function and computing local solutions reduces to minimizing the progress function.

It is also important to notice that in contrast with H∞-synthesis [3], in multi-band synthesis
closed-loop stability has to be modelled as a mathematical programming constraint, if the fre-
quency bands used for performance do not fully cover the frequency axis in a sense that will be
clarified in the application section.

In order to demonstrate the efficiency of our nonsmooth design technique in practically dif-
ficult cases, two benchmark studies are presented. The first example is a power system, which
is challenging because of the large dimension. For such large-scale systems, model reduction is
typically used, but bears the risk of having to work with overly simplified reduced models. Our
new approach is versatile in this situation, because it allows to synthesize structured controllers
such as reduced-order or decentralized controllers, or controllers including washout filters.

The second case study is a flexible telescope system, where frequency-domain constraints arise
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naturally due to the presence of flexible modes. In general, performance is dominant in the low
frequency range, while stability and robustness have to be guaranteed in the high frequency range.
In contrast with the traditional approach, where the plant and weighting functions are assembled
into an unique synthesis interconnection w → z, our approach allows to keep each frequency band
constraint wi → zi explicitly, and to address the problem in a direct and natural way.

The structure of the paper is as follows. Section 2 provides a precise statement of the multi-
band frequency domain design problem. Our resolution technique based on a nonsmooth algorithm
is discussed in section 3. Two realistic case studies are presented in section 4.

Notation

Let Rn×m be the space of n×m matrices, equipped with the corresponding scalar product 〈X,Y 〉 =
X • Y := Tr(XT Y ), where XT is the transpose of the matrix X, TrX its trace. For complex
matrices, XH denotes the conjugate transpose. For Hermitian or symmetric matrices, X Â Y
means that X − Y is positive definite, X º Y that X − Y is positive semi-definite. The symbol
Hm stands for the set of Hermitian matrices of size m. We let λ1 denote the maximum eigenvalue
of a symmetric or Hermitian matrix. The notation co(S) refers to the convex hull of the set
S. The notation ‖.‖ stands for the max singular value norm σ, unless stated otherwise. We
shall use concepts from nonsmooth analysis covered by [11]. In particular, for a locally Lipschitz
function f : Rn → R, ∂f(x) denotes its Clarke subdifferential at x, f ′(x; d) the Clarke directional
derivative. For functions of two variables f : Rn×Rm → R, the notation ∂1f(x, y) is used to denote
its Clarke subdifferential with respect to x at (x, y). In the sequel of the paper, each Twi→zi is a
smooth operator defined on the open domain D ⊂ R(m2+k)×(p2+k) of kth order stabilizing feedback
controllers

K :=

[
AK BK

CK DK

]
, AK ∈ Rk×k

with values in the infinite dimensional space RH∞ of rational stable transfer function matrices.

2 Multi-band frequency domain design

We consider a plant P in state-space form

P (s) :

[
ẋ
y

]
=

[
A B
C D

] [
x
u

]

together with N concurring performance specifications, represented as a family of plants P i(s)
described in state-space form as

P i(s) :




ẋi

zi

yi


 =




Ai Bi
1 Bi

2

Ci
1 Di

11 Di
12

Ci
2 Di

21 D







xi

wi

ui


 , i = 1, . . . , N, (2)

where xi ∈ Rni
is the state vector of P i, ui ∈ Rm2 the vector of control inputs, wi ∈ Rmi

1 the
vector of exogenous inputs, yi ∈ Rp2 the vector of measurements and zi ∈ Rpi

1 the controlled
or performance vector associated with the ith input wi. The performance channels typically
incorporate frequency filters which create new states xi containing the state x of P , so that the
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matrices Ai contain the original system matrices A, etc. The difference with the usual multi-
channel synthesis is that each Twi→zi is only tested on a specific frequency band Ii. For simplicity
of the presentation, we have assumed throughout that D = 0. When this does not hold, we
tacitly assume either a standard loop transformation of the controller is performed afterwards or
subgradient formulas are suitably extended to a non-zero feedthrough plant matrix.

The multi-band synthesis problem consists of designing a dynamic output feedback controller
ui = K(s)yi for the plant family (2) that stabilizes the original plant P in closed-loop and that
minimizes, among all internally stabilizing controllers, the worst case performance function (1).
In formulas:

minimize f(K) = max
i=1,...,N

‖Twi→zi(K)‖Ii

subject to K stabilizes (A,B,C)
(3)

where the case k = 0 of a static controller K(s) = DK is included. Often practical considerations
require additional structural constraints on the controller K. Structures as low-order controllers
(0 ≤ k ¿ ni), decentralized or fixed pattern controllers, PID control, and much else are easily
incorporated into program (3) as nonlinear programming constraints, see [2] for details.

A difficulty in (3) is that stability is not a constraint in the usual sense of mathematical
programming, because the set D of closed loop stabilizing K is open, and an element K on the
boundary ∂D is not a valid solution of the control problem. Since an optimization algorithm for
(3) eventually converges to a solution on the boundary of D, we have to modify this constraint in
order to avoid numerical failure. One way to do this is to replace program (3) by

minimize f(K) = max
i=1,...,N

‖Twi→zi(K)‖Ii

subject to g(K) = ‖(sI −A(K))−1‖∞ − β−1 ≤ 0
(4)

where A(K) is the closed-loop system matrix, and β is a small parameter. Note that the constraint
g(K) ≤ 0 in (4) will force the controller iterates to remain in the stabilizing region in the course of
the algorithm. The value of β > 0 is the smallest distance to instability we allow the closed-loop
system [10]. In our experiments we usually choose β ≈ 10−9.

Another practically interesting cast is the following

minimize f1(K) = ‖Tw1→z1(K)‖I1

subject to fi(K) = ‖Twi→zi(K)‖Ii
− γi ≤ 0, i = 2, . . . , N

g(K) = ‖(sI −A(K))−1‖∞ − β−1 ≤ 0
(5)

where one performance channel is minimized subject to performance constraints on the other
channels. Both formulation (4) and (5) are equivalent as soon as appropriate scalars αi are
introduced to weigh the relative importance of the channels in (4). In the numerical experiments
of section 4 we have chosen to work with (4), although our algorithm is open to the option (5).

We note that (4) and (5) are nonconvex programs, and finding a global solution is difficult
as a rule. In response, the technique we propose here is a local optimization method, which is
less ambitious than global methods, providing solutions with a local optimality certificate. If the
computed locally optimal controller turns out unsatisfactory, we have to restart our method at a
different initial controller or to re-tune the weights between the various performance objectives.
Our numerical experiments in Section 4 show that the slight inconvenience of a local method is
largely compensated by its practical benefits in terms of controller structure, flexibility to manage
a set of conflicting specifications, and of cpu time.
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The strategy we adopt to select the individual weights in (4) for the benchmark studies of
Section 4 is analogous to the aspiration levels approach for multi-objective optimization, see [9,
p.64]. We first normalize f(K) in (4) by setting

f(K) = max
i=1,...,N

‖Twi→zi(K)‖Ii
/γi,

where each γi represents the aspiration level for the ith channel. The goal then becomes to find
a solution with f(K) ≤ 1, which indicates whether our specifications have been met. We then
perform a few trial-and-error designs where satisfied constraints can be strengthened while violated
constraints can be relaxed.

3 Nonsmooth minimization technique

In this section we give a concise presentation of our optimization method. For a more detailed
introduction to the salient features we refer the reader to [3, 17], and to [16] for variations of the
present technique. Our goal is to minimize a function of the form

f(K) = max
i=1,...,N

fi(K),

where each fi(K) is a nonsmooth and nonconvex function of the form

fi(K) = sup
ω∈[ωi1,ωi2]

λ1([Twi→zi(K)](jω)[Twi→zi(K)](jω)H).

Notice that for convenience we have replaced f, fi, g in (4) and (5) by their squares. In order
to alleviate notation, we will henceforth write fi(K,ω) = λ1([Twi→zi(K)](jω)[Twi→zi(K)](jω)H),
Ti := Twi→zi , and [Si(K)](jω) = [Twi→zi(K)](jω)[Twi→zi(K)](jω)H . The remainder of this section
is now dedicated to the following three issues. How to compute function values and subgradients
of f(K) and g(K), how to use this information to generate steps which reduce the value of f
and render the constraint g(K) ≤ 0 feasible, and finally, how to assemble this into a numerically
successful first-order algorithm.

3.1 Computing jet information

Computing function values of each fi(K) can be based on the Hamiltonian algorithm of [8],
originally designed to compute the H∞ norm of a stable transfer function. The original technique
can be applied with minor changes to the case where the search for imaginary-axis Hamiltonian
eigenvalues is restricted to the frequency band of interest. A numerical issue may arise when the
dichotomy search hits function values at infinity, fi(K,∞). We can get around this difficulty by
mapping the ith frequency band [ωi1, ωi2] conformably onto [0,∞] via

ω′ =
ωi1 − ω

ω − ωi2

⇐⇒ ω =
ω′ωi2 + ωi1

ω′ + 1
, (6)

where ω′ ∈ [0,∞] and ω ∈ [ωi1, ωi2]. The Hamiltonian algorithm has to be applied to each
fi(K), g(K) separately. It computes the function value, and the finite set of active frequencies or
peaks in each window [ωi1, ωi2].
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Subgradient information for each of the branches fi(K) is now obtained by the formulae first
developed in [3] for a transfer function on the interval [0,∞]. Indeed, using the change of variables

(6), the ith performance channel Ti in the variable ω is transformed into a transfer function T̃i in
ω′ ∈ [0,∞] via

T̃i(jω
′) =

1

jω
?

[ ωi1

jωi2
αi

αi
1

jωi2

]
?

[ Ai(K) Bi(K)
Ci(K) Di(K)

]
=:

1

jω′
?

[
Ãi(K) B̃i(K)

C̃i(K) D̃i(K)

]
,

where αi =
√

ωi2 − ωi1/ωi2, and where Ai(K) etc. are the system matrices of Ti, Ãi(K), etc.

those of T̃i. Writing
[

[T̃i(K)](s′) [G̃i
12(K)](s′)

[G̃i
21(K)](s′) ?

]
:=

[
C̃i(K)

C̃i
2

]
(sI − Ãi(K))−1

[
B̃i(K) B̃i

2

]
+

[
D̃i(K) D̃i

12

D̃i
21 ?

]
,

the subgradients of fi(K) are of the form [3]

Φi
Y = 2

∑

ω′∈Ω′i(K)

Re
{

[G̃i
21(K)](jω′)[T̃i(K)](jω′)HQω′Yω′Q

H
ω′ [G̃

i
12(K)](jω′)

}T

, (7)

where Ω′
i(K) ⊂ [0,∞] is the finite set of active frequencies of the ith channel T̃i in the trans-

formed variable ω′. Here Qω is a matrix whose columns form an orthonormal basis of the
eigenspace of [T̃i(K)](jω′)[T̃i(K)](jω′)H associated with its maximum eigenvalue, and Yω′ º 0,∑

ω′∈Ω′i(K)Tr(Yω′) = 1. The subgradient is for convenience indexed by Y = (Yω′ : ω′ ∈ Ω′
i(K)).

In order to compute subgradients of f , we now have to take into account which of the indices
i = 1, . . . , N is active in the sense that fi(K) = f(K). Writing this set as I(K), we obtain the
subgradients ΦY,τ ∈ ∂f(K) as

ΦY,τ =
∑

i∈I(K)

τiΦ
i
Y ,

∑

i∈I(K)

τi = 1, τi ≥ 0,
∑

ω′∈Ω′i(K)

Tr(Y i
ω′) = 1, Y i

ω′ º 0. (8)

3.2 Optimality function

Having explained in which way subgradients of the objective and constraint functions f(K) =
maxi=1,...,N fi(K) and g(K) are computed, let us now consider the program

min{f(K) : g(K) ≤ 0} (9)

and investigate the generation of search steps. Following an idea in [17], we introduce the so-called
progress function for (9):

F (K+, K) = max{f(K+)− f(K)− µg(K)+; g(K+)− g(K)+},
where µ > 0 is some fixed parameter, and where g+ stands for the positive part g+ = max{g, 0}.
We think of K as the current iterate, K+ as the next iterate or as a candidate to become the next
iterate. A key advantage of the progress function formulation is to overcome the complications
inherent to pure penalty approaches as developed in [5]. There is no penalty update and re-solving
which reduces execution times and avoids artificial ill-conditioning. The following properties of
the progress function are crucial for the understanding of our method. For a proof we refer to [6].
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Lemma 1 a) Suppose K̄ is a local minimum of program (9), then K̄ is also a local minimum of
F (·, K̄). In particular, this implies 0 ∈ ∂1F (K̄, K̄).

b) If K̄ satisfies the F. John necessary optimality conditions for (9), then 0 ∈ ∂1F (K̄, K̄).
c) Conversely, if 0 ∈ ∂1F (K̄, K̄), then K̄ is either a F. John critical point of (9), or it is a

critical point of constraint violation.

We have used ∂1 to denote the Clarke subdifferential with respect to the first variable. Notice
here that K̄ is called a critical point of constraint violation of (9) if g(K̄) ≥ 0 and 0 ∈ ∂g(K̄). The
interpretation of this is as follows. If g(K̄) > 0, the constraint is violated. Moreover, 0 ∈ ∂g(K̄)
says that K̄ is a local minimum (a critical point), so no progress toward the constraint can be
made by moving from K̄ to some nearby point K̄ + dK. In other words, a point with these
characteristics means failure to solve program (9). The case g(K̄) = 0, 0 ∈ ∂g(K̄) is of course the
limiting case of the above. Here the point K̄ is feasible, but we cannot further optimize f(K) in
the neighbourhood of K̄, because the constraint will not let us move, as it becomes infeasible as
soon as we try.

A consequence of Lemma 1 is that we should look for points K̄ satisfying 0 ∈ ∂1F (K̄, K̄). For
this we apply some sort of linearization procedure to the functions f and g. Writing fi(K) in the
form

fi(K
+) = max

ω∈Ii

λ1([Si(K
+)](jω))

we introduce a first-order approximation of f in the neighbourhood of K:

f̃i(K
+, K) = sup

ω∈Ii

λ1([Si(K)](jω) + [S ′i(K)](jω)(K+ −K))

= sup
ω∈Ii

sup
Zω,i∈Bi

Zω,i • ([Si(K)](jω) + [S ′i(K)](jω)(K+ −K)),

where [S ′i(K)](jω) is the Fréchet derivative of [Si(·)](jω) at K, Bi = {Z ∈ Hmi : Z º 0, Tr(Z) =
1}, and where mi is the size of Si = TiT

H
i . Associating g̃ with g in a similar fashion, we obtain a

first-order approximation or linearization of F (K+, K):

F̃ (K+, K) = max

{
max

i=1,...,N
f̃i(K

+, K)− f(K)− µg(K)+; g̃(K+, K)− g(K)+

}
.

Notice that F̃ (K,K) = F (K,K), and that F̃ (K+, K) is close to F (K+, K) for K+ in a neigh-

borhood of K. Moreover, ∂1F̃ (K, K) = ∂1F (K, K), so we keep looking for points K̄ with

0 ∈ ∂1F̃ (K̄, K̄). It is convenient to write F̃ somewhat differently. We put

αi(Zω,i, ω) = Zω,i • [Si(K)](jω)− f(K)− µg(K)+, Φ(Zω,i, ω) = [S ′i(K)](jω)?Zi (10)

for i = 1, . . . , N , and

αN+1(Zω,N+1, ω) = Zω,N+1 • [SN+1(K)](jω)− g(K)+, ΦN+1(Zω,N+1, ω) = [S ′N+1(K)](jω)?Zω,N+1.

Then, putting G = co{(αi(Zω,i, ω), Φi(Zω,i, ω)) : ω ∈ Ii, Zω,i ∈ Bi, i = 1, . . . , N + 1}, we have

F̃ (K+, K) = max{α + 〈Φ, K+ −K〉 : (α, Φ) ∈ G}.
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Since G is an infinite set, our last step is now to replace it by a finitely representable (and therefore

computable) approximation Ĝ. This corresponds to replacing F̃ (K+, K) by the approximation

F̂ (K+, K) defined as

F̂ (K+, K) = max{α + 〈Φ, K+ −K〉 : (α, Φ) ∈ Ĝ}.
The role of Ĝ is to render the tangent program numerically tractable. It consists in choosing a
finite set of frequencies, ω ∈ Ωi

e(K) ⊂ Ii, and letting the Zω,i ∈ Bi take a specific form.

We construct Ĝ as follows. Define fN+1(K) := g(K) and for every i = 1, . . . , N + 1 take
the finite set Ωi(K) of active frequencies of fi(K) at K. In other words, fi(K) = fi(K, ω) for
ω ∈ Ωi(K). Now for every i add finitely many nearly active frequencies to those in Ωi(K) to
obtain an extended set of ω ∈ Ωi

e(K). Notice that fi(K, ω) < fi(K) for ω ∈ Ωi
e(K) \Ωi(K). Now

pick for each i and for every ω ∈ Ωi
e(K) an orthonormal basis Qω,i of the eigenspace of fi(K,ω) =

λ1 ([Si(K)](jω)) at K, so that ∂fi(K, ω) = {[S ′i(K)](jω)?[Qω,iYω,iQ
H
ω,i] : Yω,i º 0, Tr(Yω,i) = 1}.

In other words, Zω,i = Qω,iYω,iQ
H
ω,i reduces the degrees of freedom from mi(mi + 1)/2 in the class

of all Zω,i to the smaller size of Yω,i. Include all these elements Φ = [S ′i(K)](jω)?[Qω,iYω,iQ
H
ω,i]

with their corresponding terms αi(Zω,i, ω) as in (10) among Ĝ. As the matrix Qω,i is fixed, it is
convenient to index these terms as Φi(Yω,i, ω) and αi(Yω,i, ω), where ω ∈ Ωi

e(K) and Yω,i º 0,
Tr(Yω,i) = 1 has the appropriate size, and i = 1, . . . , N + 1. The index i = N + 1 adds the
corresponding elements for the constraint g.

Having defined the approximation Ĝ and therefore F̂ (K+, K), we solve the tangent program

min
dK

F̂ (K + dK, K) +
δ

2
‖dK‖2. (11)

The solution being dK, we check whether K+ = K + dK is acceptable. If this is not the case, we
perform a backtracking linesearch until K+ = K + tdK satisfies the Armijo condition

F (K + tdK,K)− F (K,K) < γtF ′(·, K)(K; dK)

for some fixed 0 < γ < 1. The crucial facts about (11) have been established in [3], and we state
them here without proof:

• As soon as the solution dK of (11) is nonzero, dK is a descent direction of F (·; K) at K.
On the other hand, if the solution is dK = 0, then 0 ∈ ∂1F (K, K).

• The Armijo line search can be arranged to find a successful step after finitely many trials.

Notice that computing the Fréchet derivatives [S ′i(K)](jω) and their adjoints leads exactly to the
formulae (7) and (8) for the subgradients.

We end this section by explaining how (11) is solved. This program is of the form

min
dK

max
(α,Φ)∈Ĝ

α + 〈Φ, dK〉+
δ

2
‖dK‖2.

Passing to the convex hull over Ĝ does not change the inner supremum, but allows us to interchange
min and max using Fenchel duality. The then inner infimum over dK is unconstrained and can
therefore be computed explicitly, yielding

dK = −(1/δ)Φ.
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Substituting this back leads to the dual form of (9), which is

max
(α,Φ)∈co(Ĝ)

α− 1

2δ
‖Φ‖2.

This may now be written more explicitly as

maximize
N+1∑
i=1

∑

ω∈Ωi
e(K)

τω,iαi(Yω,i, ω)− 1

2δ

∥∥∥∥∥∥

N+1∑
i=1

∑

ω∈Ωi
e(K)

τω,iΦi(Yω,i, ω)

∥∥∥∥∥∥

2

subject to Yω,i º 0, Tr(Yω,i) = 1

τω,i ≥ 0,
N+1∑
i=1

∑

ω∈Ωi
e(K)

τω,i = 1.

Using a standard trick converting the quadratic expression into a linear matrix inequality, this
may be turned into a (linear) semidefinite program.

A case of special interest is when the eigenvalue multiplicity of all the maximum eigenvalue
functions equals 1. Then the program has the more convenient form

maximize
N+1∑
i=1

∑

ω∈Ωi
e(K)

τi,ωαi(ω)− 1

2δ

∥∥∥∥∥∥

N+1∑
i=1

∑

ω∈Ωi
e(K)

τi,ωΦi(ω)

∥∥∥∥∥∥

2

subject to τiω ≥ 0,
N+1∑
i=1

∑

ω∈Ωi
e(K)

τi,ω = 1.

which is the dual (concave) form of a convex quadratic program.

3.3 Algorithm

Parameters: δ > 0, 0 < β, γ < 1.
1: Initialize. Choose closed-loop stabilizing K1.
2: Stopping test. If 0 ∈ ∂1F̂ (Kj, Kj) then stop. Otherwise continue.
3: Compute descent direction. At counter j solve tangent program (11)

min
dK

F̂ (Kj + dK,Kj) +
δ

2
‖dK‖2.

Solution is the search direction dK.
4: Line search. Find t = βν , ν ∈ N, satisfying the Armijo condition

F (Kj + tdK,Kj)− F (Kj, Kj) ≤ γtF ′(·, Kj)(Kj, dK) < 0.

5: Update. Put Kj+1 = Kj + tdK, increase counter j by 1 and loop back to step 2.

Notice that this algorithm is in the class of so-called phase-I-phase-II methods. As long as
the constraint g(K) ≤ 0 is not satisfied, the right hand term in F̂ is dominant and reducing F̂
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amounts to reducing constraint violation. This is phase I, which ends successfully as soon as a
feasible iterate g(Kj) ≤ 0 has been found. Now phase II begins, and from now on iterates stay
(strictly) feasible, and the objective function is minimized at each step. In that case the algorithm
converges towards a critical point of (9). If g(Kj) > 0 for all j, then the algorithm converges to a
critical point of constraint violation. In that case which occurs rarely in practice when constraints
are feasible, a restart becomes necessary. Finally, we mention that if the controller is required
to match a specific structure, PID, observer-based, decentralized, etc the proposed algorithm is
easily adapted by applying a suitable chain rule to the subgradients [4].

Our code has been developed using Matlab. Fortran has been used for the QP code to minimize
the main performance bottlenecks. Algorithm parameters which have been used in our applications
are δ = 0.1 for the QP subproblem, and β=0.5 and γ=1e-4 for the linesearch.

4 Numerical experiments

4.1 Power system oscillation damping

In this chapter we apply our new design technique to control the Brazilian North and South
power subsystems interconnection described in [19]. The objective is to design a Power Oscillation
Damping (POD) controller equipping the Thyristor Controlled Series Compensator (TCSC), which
is installed at the south end of the interconnection. Its purpose is to minimize the system oscillation
caused by external disturbances. This oscillation is due to a poorly-damped low-frequency swing
mode, which is a characteristic of the interconnection: the so called North-South (NS) mode.
The designed controller, however, must not produce large control output so as to avoid saturating
TCSC components.

The block diagram representation of the interconnected NS system together with the closed-
loop control configuration are shown in Figure 1. The controlled and measured output y rep-
resents the total active power deviation through the series capacitor. The external disturbance
w represents the mechanical power deviation at a power plant located at the north end of the
interconnection, while the TCSC control output u is the susceptance deviation.

Power system control is difficult due to the usually large dimension of the plant. Very often in
practice, a low performance controller is synthesized heuristically. If a more systematic synthesis
technique is to be used, model reduction has to been considered. Unfortunately, reduction schemes
become critical or may fail when the system is large.

In our experiment we consider a medium-size approximation of the NS system with 90 states,
corresponding to the least-damped scenario in [19]. In that scenario, the NS mode has damping
ratio of 3.1% and a natural frequency of about 1.08 rad./s. The magnitudes of the two open-loop
transfer functions Tw→y and Tu→y are shown in Figure 2. The open-loop power system state-space
representation is given by:

P (s) :

[
ẋ
y

]
=

[
A B1 B2

C2 0 D

] 


x
w
u


 ,

where the state vector x ∈ R90 and w, u, y ∈ R. Note that the controller is computed with the
assumption D = 0 and a loop transformation is applied afterwards since the power plant has a
non-zero feedthrough term. See Figure 2.
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A possible approach to damp the NS mode is to synthesize a controller minimizing the H∞
norm of the disturbance channel w → y, which is dominated by the NS mode resonance. However,
the resulting controller is characterized by a pole-zero cancelation of the plant dynamics, which is
clearly not acceptable when model variations are to be expected. Instead, we shall take advantage
of the fact that our linear model has been obtained by modal truncation and thus has a diagonal
state-space representation. In this representation, the NS mode is associated with the first two
states, so the chosen approach is to minimize the H∞ norm of a newly defined performance channel
w → zp from the disturbance to the first two states, described as:

P p(s) :




ẋ
zp

y


 =




A B1 B2

[I2×2 0] 0 0
C2 0 0







x
w
u


 .

Unfortunately, controller synthesis based solely on such a criterion will lead to very large control
effort saturating the TCSC. To counterbalance this effect we penalize the control effort through
the channel w → zu

P u(s) :




ẋ
zu

y


 =




A B1 B2

0 0 I
C2 0 0







x
w
u


 ,

so that in closed-loop the transfer function Tw→zu equals the transfer function Tw→u from the
disturbance to the controller output.

Based on the synthesis models P p and P u, we define the set of multi-band constraints as
follows:

• NS mode damping

σ(α1Tw→zp) ≤ 1, for ω ∈ I1 := [0.1, 10] rad./s,

• control effort limitation in the neighbourhood of the NS mode

|α2Tw→zu| ≤ 1, for ω ∈ I2 := [0.1, 2] rad./s,

• control effort limitation in very low frequency range

|α3Tw→zu| ≤ 1, for ω ∈ I3:= [1e-4,1e-3] rad./s,

Trade-off between these constraints is made through the scalar positive weights α1, α2 and α3.
The third constraint is introduced to prevent poorly damped modes in the low frequency range.
Notice that both models P p and P u have the same transfer function Tu→y, but are measured on
different frequency bands.

We impose three structural constraints on the controller. Firstly, the controller must be of
reduced order, which is an important requirement given the dimension of the system. Here we
have specified a 6th-order controller. Secondly, the controller is chosen strictly proper to reduce
the effect of the external disturbance w. Finally, the controller must provide a washout effect in
order to eliminate bias. Our final synthesized controller will then take the form

K(s) =
s

s + p
K̂(s),
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where K̂(s) is a strictly proper transfer function of order 5, and the position of the real washout
pole −p is also a decision variable of the nonsmooth program. The initial controller is selected as

K0(s) =
s

s + 0.1

104s2

(s + 3)3 (s2 + 2s + 2)
.

The system is open-loop stable and the stability channel norm for K0 is ‖Tstab‖=7.4e-3. We have
observed that the stability channel has little impact in this application as the constraint becomes
never active. The initial stability constraint was set to a large value β−1 = 109. The weights
α1, α2, α3 were chosen as {92, 1155, 4e-2}.

Taken together, the three performance constraints and the stability channel can be thought
of as a synthesis plant counting 360 states. Despite that size, our nonsmooth algorithm finds a
locally optimal solution for this problem after 20 iterations within 184 seconds cputime on a 2.8GHz
Pentium processor with 1Gb RAM. The initial and final values of the band-restricted norms γi

for each performance channel are given in Table 1, while Figure 3 traces their evolution along the
iterations. We observe that the performance levels coalesce at the end of the optimization process
near the achieved local minimum, a phenomenon that is typical for nonsmooth max functions.
The final controller K(s) is obtained as:

K(s) =
0.4978s5 + 32.98s4 + 1.041e4s3 + 562.8s2 + 148.8s

s6 + 10.83s5 + 45.85s4 + 148.3s3 + 145.6s2 + 123.7s + 8.465
.

|Tw→zp|I1 |Tw→zu|I2 |Tw→zu|I3 ||Tstab||
K0(s) 1.4946 1.2628 0.0001 7.40e-3
K(s) 0.9884 0.9889 0.9887 8.5206e-3

Table 1: multi-band performance

The closed-loop system response to a disturbance step is shown in Figures 4 and 5, together
with the same responses with the initial controller K0, and with the controller from [19]. The NS
mode has now 17.5% damping, without increasing control or system response overshoot. Figure 6
shows how the multi-band specifications shaped the closed-loop system in the frequency domain.

4.2 Line-of-Sight regulation of a flexible structure

We now consider the continuous control of the elevation axis of the telescope mock-up described
in [1], consisting of a gimbal system mounted on flexural pivots. The primary objective is Line-of-
Sight(LOS) regulation in an inertial reference coordinate system against motions of the supporting
base.

The block diagram representation of the set-up is shown in Figure 7, where θs and θ̇s are
the inertial position and velocity of the supporting base, θp, θ̇p and θ̈p are the inertial position,
velocity and acceleration of the telescope, u is the control torque, θm

p and θ̈m
p are the measured

inertial position and acceleration of the telescope, and θ̈0 represents the accelerometer bias. In
the structural dynamic model, g(s) is an identified transfer function of order 40, comprising the
flexible modes of the telescope. The stiffness and friction feedbacks, kb and fb, model the flexible
bearings. Magnitudes of the open-loop transfer functions u → θ̈m

p and u → θm
p are shown in Figure

8.
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Design specifications for this application are very demanding. In order to assure high quality
LOS stabilization, the controller must achieve good disturbance rejection over a wide frequency
range. Secondly, the closed-loop system must be robust to uncertainties due to the identification
phase and to variations of the mechanical impedance of the supporting base. Also, accelerometer
bias should be rejected. Finally, a simple low-order controller is sought to facilitate on-board
implementation.

In traditional H2 or H∞ syntheses, performance and robustness specifications have to be gath-
ered into a single criterion, which requires appending inputs and outputs of all channels. This
introduces artificial crossed channels that do not reflect useful specifications. Since these cross
channels are optimized along with the genuine interconnections, this approach increases conser-
vatism. Also, traditional synthesis methods yield only full-order controllers, so that whenever
simplicity is of prior importance, either a reduced plant model must be constructed or the con-
troller has to be reduced afterwards. A further weakness of the classical approach is that weighting
functions must be knitted to achieve flexible modes attenuation and reject the accelerometer bias.

With our proposed multi-band technique, each of the design specifications can be addressed
individually. Since the controller order and structure can be specified explicitly and are indepen-
dent of the system dimension, there is no need to reduce plant or controller. The performance and
robustness specifications are simply expressed through band-restricted performance constraints:

• LOS regulation: decoupling with respect to motions of the supporting base can be achieved
by forcing the magnitude of the disturbance transfer function Tθs→θp = θp (s) /θs (s) to be
very small on the frequency range of interest:

|Tθs→θp | ≤ −70 dB, for ω ∈ I1 := [0, 2e3] rad./s.

• Robustness: robustness to unstructured uncertainties in the intermediate frequency range
is achieved by frequency shaping of the sensitivity function S̃ = (I +KP )−1, where P is the
plant in Figure 7. As is well known, the magnitude of the sensitivity function

∣∣∣S̃
∣∣∣ =

∣∣(I + KP )−1
∣∣ =

1

|1 + KP |

represents the inverse of the distance to the critical point, so that minimizing
∣∣∣S̃

∣∣∣ turns out

equivalent to maximizing the stability margin. The associated restricted-band constraint is
given as

|S̃| ≤ 1.5 , for ω ∈ I2 := [10, 400] rad./s.

• Attenuation of flexible modes: by a similar reasoning, the magnitude of the sensitivity
function is limited in the frequency range of the flexible modes:

|S̃| ≤ 1.3 , for ω ∈ I3 := [400, 2e4] rad./s.

However, this constraint alone is not enough to guarantee robustness with respect to variation
of the flexible modes, because sensitivity reduction often induces pole-zero cancellation. This
is clearly unacceptable since identified flexible modes are subject to uncertainties and also

13



since the mechanical impedance of the supporting base may undergo large deviations. This
is taken into account by prescribing a maximum roll-off in the frequency range of interest:
a channel w → zu is defined as:

P u(s) :




ẋ
zu[
θm

p

θ̈m
p

]


 =




A 0 B2

0 0 1

C2

[
0
1

]
D







x
w
u


 ,

where A ∈ R45×45, in such a way that in closed-loop the channel w → zu will be equivalent
to the transfer function θ̈m

p → u of the controller. This is motivated by the fact that the

flexible modes are relevant only through the accelerometer channel u → θ̈m
p , as can be seen

in Figure 8. Thus, robustness with regard to flexible modes can be achieved by forcing the
transfer function θ̈m

p → u of the controller to be very small in the flexible modes frequency
range:

|Tw→zu| ≤ −50 dB, for ω ∈ I4 := [5e2, 2e3] rad./s.

We note that the above specification is equivalent to imposing a constraint directly on
the controller gain, a thing which is not possible with more traditional Riccati or LMI
H∞ techniques. Such highly practical constraints are easy to handle with our nonsmooth
optimization technique.

The first structural constraint imposed on the controller is its reduced order. A controller
of order 14 is chosen. Secondly, the controller is forced to have a washout effect in the channel
θ̈m

p → u in order to reject the accelerometer bias. Finally, the controller is chosen strictly proper
for better disturbance attenuation.

The telescope system shown in Figure 7 has 45 states, structural and sensor dynamics included.
Thus, the set comprising the 4 performance channels and the stability constraint correspond to
a synthesis plant counting 225 states. The closed-loop transfer function Tθs→θp for the initial
controller is depicted in Figure 10, while Figure 11 depicts the Nichols diagram for this initial
controller. Notice that it produces an almost unstable closed-loop flexible mode, although it
presents good low-frequency properties. The initial and final values of the band-restricted norms
γi for each performance channel are given in Table 2, while their evolution along the first 150
iterations is shown in Figure 9. The algorithm takes 355 iterations in 26 minutes cpu to reach
a local minimum within the allowed tolerance. However, a feasible solution meeting all design
constraints is already available after 175 iterations.

We observe again that the performance levels coalesce at the end of the iteration sequence,
a strong indication that local optimality is reached. We also notice that the stability constraint
‖(sI −A(K))−1‖∞ ≤ 109 is not active and can probably be removed without much harm, which
if done from scratch leads to significant speed-up. Numerical experience reveals that the stability
constraint is only useful for problems involving few band constraints. It can usually be discarded
when a sufficiently rich set of simultaneous specifications is considered.

The final closed-loop transfer function Tθs→θp is shown in Figure 10. We observe an attenuation
of 70 dB as specified. Figure 11 shows the Nichols diagram for the closed-loop system. These
figures also show the closed-loop responses of a reduced 21-order model obtained by identification.
The nominal and perturbed models differ significantly in the flexible modes range, Figure 12.
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However, since the magnitude of the transfer function θ̈m
p → u has been forced below −50 dB on

the critical interval, and since the contribution of flexible modes through the channel u → θm
p is

negligible, the open-loop transfer function has magnitude always lower than unity, and the closed-
loop system remains stable in both cases. See the Nichols plot in Figure 11. Figure 13 shows the
gain plots of each performance channel. The verticals lines materialize the restricted frequency
bands and the symbols × correspond to gridded frequencies which have been selected to construct
the bundle of subgradients. Again as expected all band restricted performances were achieved in
the sense that f(K) ≤ 1, see Figure 13.

|Tθs→θp |I1 |S̃|I2 |S̃|I3 |Tw→zu|I4 ||Tstab||∞
Initial 8.39 1.0863 24.533 51.65 548
Final 0.97966 0.98543 0.97776 0.98756 262

Table 2: Final multi-band performances for the telescope

Remark. We point the reader to a specific advantage of our optimization method. The fact
that some performance constraints become active at the local minimum, while others may remain
inactive, conveys valuable information to the designer, which is not readily available if weighing
filters are used. Moreover, even when all constraints are active, there is useful information available
from the different weights of the subgradients of each constraint, which can be understood as
Lagrange multipliers. They allow the designer to understand the relative importance of each
constraint.

For further illustration of our method, we consider a simpler problem with a single band-
restricted objective

f(K) := ‖Tθs→θp(K)‖I1 ≤ −100 dB, where I1 = [0, 100] rad/s.

The evolution of the objective together with the normalized stability constraints β · ‖(sI −
A(K))−1‖∞ is displayed in Figure 14. We observe that the stability constraint becomes active
after 100 iterations, which justifies the proposed approach to maintain stability.

5 Conclusion

We have discussed a new nonsmooth algorithm for design problems subject to several band-
restricted frequency domain constraints. It computes local solutions via the minimization of a
progress function. A central strength of our formulation is to overcome the complications of pure
penalty approaches in terms of running times and problem conditioning. Indeed, solutions of the
original problem are obtained through a single minimization of the progress function.

Our approach is flexible because it bypasses the difficult phase of selecting weighting func-
tion, and because it allows to handle a large variety of controller structures of practical interest.
Applications to a power system damping problem and to line-of-sight stabilization of a telescope
system, both large scale, demonstrate that the approach is an efficient practical design tool in
challenging situations.
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Figure 1: Closed-loop block diagram
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Figure 2: Open-loop system transfer functions magnitudes
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Figure 7: Block-diagram representation of the telescope system
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