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Abstract

This paper describes a new framework for the analysis and synthesis of control systems, which consti-
tutes a genuine continuous-time extension of results that are only available in discrete time. In contrast
to earlier results the proposed methods involve a specific transformation on the Lyapunov variables and a
reciprocal variant of the Projection Lemma, in addition to the classical linearizing transformations on the
controller data. For a wide range of problems including robust analysis and synthesis, multi-channel Hs
state- and output-feedback syntheses, the approach leads to potentially less conservative LMI characteri-
zations. This comes from the fact that the technical restriction of using a single Lyapunov function is to
some extent ruled out in this new approach. Moreover, the approach offers new potentials for problems
that cannot be handled using earlier techniques. An important instance is the eigenstructure assignment
problem blended with Lyapunov-type constraints which is given a simple and tractable formulation.

Key words. Robustness analysis, robust control, multi-objective, multi-channel synthesis, Linear Matrix
Inequalities.

1 Introduction

In recent times, LMI techniques have come to be essential tools for the analysis and synthesis of control
systems, and more specifically in the area of robust control. This is due to three main factors. First of
all, LMI techniques offer the advantage of operational simplicity in regard to classical approaches which
necessitates the more cumbersome material of Riccati equations and the like. A small number of concepts
and basic principles are sufficient to develop tools which can then be used in practice. Secondly, they render
accessible a vast panorama of control problems including robustness analysis, nominal Ho,, Hy and robust
control syntheses, multi-objective synthesis and Linear Parameter-Varying synthesis. Some of them cannot
be handled in the classical setting. Thirdly, these techniques are effective numerical tools exploiting a solidly
based branch of convex programming with efficient softwares attached to the theoretical body.

A closer look to the literature in the recent years reveals that most LMI control methods make use of
Lyapunov variables and possibly additional variables, often called scalings or multipliers, which in some sense
translate how ideal behaviors are altered by uncertainties or perturbations. These methods are constantly
refined in two directions:
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e more and more sophisticated classes of multipliers are developed to take maximum advantage of the
information available on the nature and structure of the uncertainties [3, 15, 13]

e for similar reasons, single Lyapunov functions are replaced with a “multiple” Lyapunov function [10, 2, 9]
in order to end up with more accurate tools and reduce the degree of conservatism inherent to robust
control problems.

This paper is a contribution in the second direction and accounts for the fact that a major drawback of
most existing LMI formulations is that the Lyapunov function used for checking system performances is itself
involved in controller variables. This leads to unnecessary restrictions on the set of solutions and limits the
practical appeal of these methods. This weakness is apparent in, for instance, robust state-feedback control
of polytopic systems where a common Lyapunov function is used for all vertices of the polytope but also
in multi-channel H, state- and output-feedback synthesis problems where one has to use a single Lyapunov
function for all performance constraints. Although multiple or parameter-dependent Lyapunov functions
have been used successfully in analysis problems [10, 9], this remains an issue for synthesis problems because
of the intricate interrelations between plant and controller data on one side and the Lyapunov variables on
the other side.

A significant breakthrough towards the (partial) elimination of this weakness is the work in [6, 5]. In
this work, the authors propose new LMI representations in which the interrelations discussed before are to
some degree bypassed through the use of an auxiliary slack variable. The consequence of these developments
is a reduction of conservatism in a broad class of problems including robust control, multi-objective control,
decentralized control etc. The work in [6, 5] exploits some natural properties of discrete-time LMI charac-
terizations which enjoy some sort of factorized structure. Analogous LMI formulations for continuous-time
systems remain open and challenging and they constitute the motivation of our developments in this paper.
Namely, we introduce general techniques and tools which have important consequences in the context of
analysis and synthesis with LMIs. Key ideas consist in a reciprocal variant of the Projection Lemma which
permits to recast many usual LMI characterizations as augmented LMI representations. These new repre-
sentations involve (slack) variables which provide additional flexibility in a wide range of problems. Topics
under consideration include classical LMI problems such as analysis with parameter-dependent Lyapunov
functions, robust control of polytopic systems, multi-channel Hs state- and output-feedback synthesis, but
also some new and important problems such as eigenstructure assignment or pole placement combined with
Lyapunov-type constraints. It is worth mentioning that the latter problems are not tractable within the usual
LMI setting but can be given simple and practical formulations with the proposed tools and techniques.

The paper is organized as follows. Instrumental tools which are used throughout are introduced in Section
2. Section 3 investigates new LMI representations for stability and performance specifications. Analysis and
synthesis results for polytopic uncertain systems is considered in section 4. The problem of eigenstructure
assignment combined with Lyapunov-type objectives is discussed in Section 5. Finally, the multi-channel Hy
output-feedback synthesis problem is discussed in Section 6.

The notation used throughout the paper is fairly standard. M7 is the transpose of the matrix M. The
notation Tr M stands for the trace of M. The notation spec (M) stands for the spectrum of a matrix M.
For Hermitian or real symmetric matrices , M > N means that M — N is positive definite and M > N
means that M — N is positive semi-definite. In symmetric block matrices or long matrix expressions, we use
* as an ellipsis for terms that are induced by symmetry. The convex hull of the points A4;, ¢ = 1,..., N is
denoted as co {Aj,...,An}. diag(M,..., M) denotes the matrix having My,..., My as (non-necessarily



square) diagonal blocks, that is,

My 0 0
diag(M,, ..., Mp) := 0 M
0
0 0 Mg

2 Instrumental tools
Throughout the paper, we shall make an intensive use of the Projection Lemma [8]. It is repeated here for
convenience.

Lemma 2.1 (Projection Lemma) Given a symmetric matriz ¥ € R™*™ and two matrices P,Q of col-
ummn dimension m, there exists an X such that the following LMI holds

¥+ PIxTQ+Q"xP<o. (1)
if and only if the following projection inequalities with respect to X are satisfied
{ N]:g YNp < 0
./Vg \ NQ < 0,
where Np and Ng denote arbitrary bases of the nullspaces of P and @, respectively.

2)

Also, we provide a variant of a reciprocal version of the Projection Lemma that will facilitate subsequent
derivations.

Lemma 2.2 (Reciprocal Projection Lemma) Let P be any given positive definite matriz. The following
statements are equivalent:

(i) :T+S5+87<o0. (3)

(#4) : the LMI problem
v+P-W+wT) ST+wT

S+ W —p <0 4)

is feasible with respect to W .

Proof: It suffices to compute the projection conditions according to Lemma 2.1 with respect to the general
variable W. n

As one can see, the Reciprocal Projection Lemma produces a dilated characterization in a space of
augmented dimensions both in terms of constraints and variables. The conditions (3) and (4) are strictly
equivalent, but the slack variable W provides additional flexibility in a broad class of problems. The remain-
der of the paper is an examination of its consequences.

3 New LMI characterizations for stability and H, performance

In this section, we introduce new alternative characterizations of the fundamental Lyapunov stability The-
orem for linear systems. All forms, are of course equivalent but are more or less practical when analysis
or synthesis aspects come into play. The results below also constitute the core of the development in the
subsequent sections. It introduces a new transformation on the Lyapunov variables which helps to reduce
the degree of conservatism in some delicate problems. This will appear more in light for robust synthesis
and multi-channel synthesis problems.



3.1 Stability

Theorem 3.1 (Stability theorems) Condition (i) and the LMI conditions (ii)-(v) symmetric matriz vari-
ables X and 'Y and general matriz variables W and V, are equivalent.

(1) : A s Hurwitz (Re)X;(A) <0). (5)
T
(i) : 3 Xsuch that [A X(;’XA _OX] <0. (6)

Y -W+WT) Ay + w7

(13t) : Y, Wsuch that [ Y AT + W y ] <0. (7)

—(vV+vh) viA+x vt

(iv) : 3V, Xsuch that | ATV +X -X 0 | <O0. (8)
L V 0 -X
—(v+vTh) viAT+x vT

(v) : 3V, Xsuch that | AV + X -X 0 | <0. (9)
L 14 0 -X

Proof: Note that the equivalence between (i) and (ii) is the standard Lyapunov Theorem for continuous-time
linear systems. The equivalence between (iii) and (iv) is obtained by performing the congruence transforma-
tion v oo
; — w1 —vy-1

[0 X] with V=W, X =Y

in (7), which yields
VIX-lv —(V+VT) VIA+X <0
ATV + X -X ’
Then, a Schur complement operation with respect to the term V7 X~V leads to (8). Thus, we shall only
prove that (iv) and (v) reduce to (ii). A fairly short proof of the equivalence between (ii) and (iv) can be

obtained by invoking Lemma 2.2. Indeed, the Lyapunov inequality (ii) is equivalent to
AY +Y AT <0, with YV := X1,
The use of Lemma 2.2 with ¥ := 0, and S = AY yields
[—(W+WT) +P AY+WT]
YAT +W -pP
or equivalently with X :=Y 1,

{—(W+WT)+P A+WTX

AT 4 XW _XPX ] <0 (10)

By the congruence transformation
V 0
0 I
and a Schur complement operation with respect to the term V7 PV, the inequality (10) in turn becomes

-(V+vTh) viA+Xx vT
ATv+X —-XPX 0
1% 0 —p1

] , with V:=Ww™1,

<0,
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which linearizes to (8) with the special choice P := X 1.
Finally, (v) is the dual of (iv) in the transformation A — AT and can be shown to be equivalent to (ii)

by similar arguments. ]

Remark 3.2 There are a few points to have in mind to understand these alternative forms and their
usefulness.

e In (iii), the Lyapunov terms AY and Y AT are separated by means of an intermediate (slack) variable
W . Furthermore and more importantly, the classical product terms A7 X and XA fully disappear in
(iv) and (v), and this will offer new potentials both for analysis and synthesis. Similar ideas have been
presented earlier in [6, 5] for the discrete-time case.

e The LMI condition (8) is significantly more costly than its original form (5) because of the additional
general matrix variable V' (V' € R™ "™ where n = dim A). We shall see however that this extra
computational overhead is more than offset by a reduction of conservatism in delicate problems.

3.2 Multi-channel H, performance

There are important extensions of the stability results in Section 3.1 to performance specifications.
For future use, we introduce the system governed by

T = Az + Bw

z = Czr+ Dw, (11)

where w is the exogenous input and z is the controlled output.
The following results for Hy performance parallels those for the stability Theorem 3.1. We are considering
the system described in (11) with the strict properness assumption, i.e. D = 0.

Theorem 3.3 (H2 performance) The following statements, involving symmetric matriz variables X, Z
and the general matriz variable V1 are equivalent.

(i) : A is stable and |C(sI — A)7'B|2 < 7. (12)
.. ATX + XA XB
(#6) : 3IX, Z such that [ BT T <0,
T
[)c( %]>0, ™7 < 1. (13)
-W+Vv) VA+X VB V[
ATV + X -X 0 0
(#92) : 3X, Z, Vi such that BTV, 0 A0 <0,
Vi 0 0 -X
T
AN »
-Wi+vh) viAT+x vifet vlE
L AVi + X _X 0 0
(i) : 3X, Z, V1 such that oV 0 T o | < 0,
%1 0 0 -X
X B
[BT Z]>O,TIZ<1. (15)



Proof: The proof is again an application of Lemma 2.2 and is ommitted for brevity. [ |

4 Analysis and synthesis for uncertain polytopic systems

There are many potential applications and combinations of Theorems 3.1 and 3.3. We shall discuss some
examples to illustrate the improvements over more classical characterizations. We must keep in mind however
that the reasoning below has a general nature.

Consider a linear-time invariant uncertain polytopic system described as

N N
= Ala)z = Z%‘Aﬂ?, a; >0, Z a; =1 (16)
i=1 i=1
Le.,
A(Ot) € co {Al,...,AN}. (17)

By virtue of the properties of convex combinations, and using the characterization (8), the uncertain
system (16) is stable whenever there exist matrices {X;},_; 5 and V such that

-(V+v)T vTiA+Xx; VT
ATV + X; -X; 0 | <0 i=1,...,N. (18)
1% 0 -X;

Remark 4.1 Note that the LMI condition (18) establishes robust stability of the polytopic system (16)
through the use of a parameter-dependent Lyapunov functions. More specifically, it is readily verified by
invoking the necessary part of the Projection Lemma 2.1 that

N
V(z,a) = IT(Z a; X;)x

is a Lyapunov function for the polytopic system.
It is worth noticing that we didn’t prove that tests based on (18) are less conservative than the single
Lyapunov function test
ATX + x4;<0, i=1,...,N, X>0.

Extensive numerical experience indicates however that the proposed test results in dramatic improvements
which is consistent with previously developped techniques [9, 7, 1, 18]. As an example, the uncertain system
(16) with N = 2 and
A = [0 —0.1] 0 —1.9]
1 =05’ 1 —-05)]°
can be shown to be stable with the proposed characterization but stability cannot be established through a

single Lyapunov function. Further examples can be found in the related paper [19] in the context of robust
filtering.

o]

As an immediate byproduct, the approach applies with the same ease to the synthesis of state-feedback
control u© = Kz for polytopic uncertain systems z = (Ei]il aiAi) T+ (Zi]il aiBi) u . The back and forth
transformations [5, 6]

R:= KV, K =RV !, (19)



immediately lead to the LMI synthesis conditions in the variables {X;},_; y,V and R

~-v+wv)I' vTAT + X;+ RTBY V7T
A;V 4+ X; + B;R —X; 0 <0 1=1,...,N. (20)
|4 0 —-X;

The idea of using a different Lyapunov function for each vertex of the polytope also has interesting
consequences for problems involving various stability /performance specifications as those discussed earlier
and/or specifications defined channel-wise as for instance ||S||2 < 71 and ||T'||2 < 72, where S is the sensitivity
function and T is the complementary sensitivity function. One can then use a different Lyapunov function
families {{X;};}, for each specification and each channel indexed by j whereas the matrix V' (see (8) and
(15)) is common to all constraints. If state-feedback is allowed, one will perform the change of variable (19),
so that the multi-channel Hy problem becomes an LMI program and therefore is readily solved. Extensions
to multi-channel Hy state-feedback control of polytopic uncertain systems by using the characterizations (15)
and transformation (19) is left to the reader.

5 Mixed eigenstructure assignment with Lyapunov-type constraints

In this section, we deal with another interesting application of the proposed techniques. We consider the
problem of exact assignment of the closed-loop eigenvalues to prescribed locations of the complex plane
while enforcing Lyapunov-type constraints such as those discussed in previous sections. This problem should
not be confused with the clustering technique in [17] which cannot handle the precise location of individual
eigenvalues. Pole placement is a very classical method for control design and can be very efficient in the
hands of practitioners. There are however few tractable extensions which allow combination with other
objectives such as quadratic performance. Hence, one has to resort to some general optimization softwares
to locally determine solutions that achieve some compromise between pole placement and some other objec-
tive. Hereafter, we describe an alternative approach which requires only solving LMIs, and thus is highly
practical. We should also stress out that the developments below are not possible with the customary LMI
characterizations, and this again reemphasizes the role played by the new representations and tools described
above.
Consider the open-loop plant governed by

z = Az + Biw+ Bsu, By € RPX™
z = Ciz+ Dyyw+ Dysu.

(21)
We are seeking a state-feedback control u = Kz such that
e the closed-loop spectra satisfies
spec (A + BoK) ={A1,...,\n}
where the \;’s denote desired closed-loop eigenvalues.

e a family of Lyapunov-type specifications (Sections 3.1 and 3.2) are met in closed-loop.

The assignment of the set of eigenvalues {\1,...,A,} by state-feedback is quite a simple problem [14, 11]
and can be carried out in two steps:

1- compute for 1 = 1,...,n bases

[A]\/‘][Z] of the nullspace of [A— NI By] (22)
2

with conformable partitioning.



2- for arbitrary column vectors &; of dimension m, compute the state-feedback controller

K=RV~!, where R=[Ni,...,N,|diagéi, V =[M,...,M,]diagé;. (23)
i=1 =1

Note that for this procedure to be valid, the &;’s must be chosen so that matrix V in (23) is invertible.
Moreover, the non-real eigenvalues must occur in conjugate pairs. Also, for a complex-conjugate eigenvalue
pair (Aj, Aj+1), with Aj11 = A7, the nullspace computation in (22) must be replaced with

M;

N; A-ReX] By, ImMI 0
My nullspace of By 0 A—ReMI Byl (24)
Nj 1

Summing up, the generic form of the state-feedback gain which assigns the closed-loop spectra as desired
is

K:=RV ! where R=NE, V=ME, (25)
where
N = [---;Ni;---aNjaNj—}—la---]7
M = [...,Mi,...,Mj,Mj+1,...], (26)

(1]
|

= dlag( vy &y agja£j+17 .. ')7 & € RmX17 5] = £j+1 e Rmx1 )

with the subscripts ¢ and 7, j + 1 for real and complex-conjugate eigenvalues, respectively. Note that the
matrix = gathers all degrees of freedom. They can in turn be used to shape the right eigenvectors v; := M;&;
of the closed-loop matrix A + B3 K and thereby to achieve some modal distribution or internal decoupling.

By virtue of the identity of the controller formulas in (19) and (25), it becomes fairly easy to blend
the eigenstructure assignment method with any of the Lyapunov-type specifications encountered so far.
This is obtained by picking up as V' and R matrices in the Lyapunov-type constraints those of (25). As an
illustration, equipped with the LMI characterization (15), eigenstructure assignment with an Hy performance
constraint and the standard assumption Di; = 0, can be recast as an LMI program in the variables =, X

and Z:
—(ME+ETMT) * *

AM=+ BN+ X -X  «

*
CAME+ DpNE 0 -y % | <9
ME 0 0 -X

X B
[B? Z]>O,’I‘rZ<1.

When solved, the controller gain is easily determined with the help of the formulas (25) and (26).

The success of this procedure hinges on the availability of degrees of freedom in excess with respect to a
pure pole placement. These degrees of freedom, in matrix =, are related to the dimensions of the nullspaces
in (22) and (24). For single input systems, these dimensions drop to 1 and 2 respectively, so that there is
no longer freedom for other performance constraints. The approach is therefore only valid for multivariable
systems. One way to overpass this difficulty is to allow dynamic state-feedback controllers. This is realized
with the augmentation scheme

450 ([5 ol [ 01 o)

In this case, sufficient freedom can be gained to tackle multi-constrained problems. Another possibility of
practical interest, is to perform a partial pole placement. Hence, only a subset of column vectors of V and



R have to satisfy the subspace inclusions defined in (22) and (24). The remaining freedom can then be used
to meet additional Lyapunov-type constraints. The relationships (25) become,

K := RV ™!, where R= NZy, V=MEy,

where
n—! times
N = [MN,...,N,I,I,... 1],
n—1 times
—
M = [M,...,M,I,I,... I,
Em = dia‘g(gla"'aglaﬁla"'a'ljn—l)a fz € R™, 6] :€j+1 ER2ma v, €R"
Ey = diag(és,...,&,71,...,T1), & ER™, & =& € R, 7 € R™
The vectors &;’s, 2 = 1,...,1 correspond to the placement of [ (I < n) poles and reduce to a scalar for single
input systems. The vectors ¥y and 7 are not spended in the pole placement problem and thus are useful to
meet independent Lyapunov-type constraints. A short verification that {A1,...,\;} is a set of closed-loop

eigenvalues is obtained through the computation

(A+BoK)Mi&i = {(A+ Bo[Ny,.. |diag(ér,..)([My,.. ] diag(ér,...)"1)
([Ml,]dlag(fl,))ez
= AM;&; + BaNi§;
= NMg;,

where (e;); is the canonical basis of R™ and the last equality follows from the definitions (22) and (24).
The case of complex-conjugate eigenvalues can be handled in the same manner. Finally, note that LMI
characterizations for partial pole placement and Lyapunov-type constraints will involve the variables X; for
each constraint and Zp, Zjy.

6  Multi-channel H, output-feedback synthesis

In this section, we take advantage of the characterizations derived in Sections 3.1 and 3.2 to provide a new
more accurate method for output-feedback synthesis with multi-channel constraints. The reader is referred
to [5] for the discrete-time version of this work. Also, since the proof has strong similarities with the results
in [17, 12|, we shall put a special emphasis on new aspects. The general setup of the problem is as follows.
Consider a plant
t = Az + Biyw+ Bou, Ae€R™"

P(S) z = Ciz+ Diyw+ Diou (27)

Coz + Dy1w

<
|

where
e u € R™2 is the vector of control inputs,
e w € R™ is a vector of exogenous inputs,
e y € RP? is the measurement vector

e z € RP! is a vector of controlled variables.



Let T'(s) denote the closed-loop transfer functions from w to z for some dynamic output-feedback control
law u = K(s)y. Our goal is to compute a full-order output-feedback controller

K(s) { :

which meets a family of input-output specifications such as those discussed in Section 3. One such set of
specifications is for instance

Argzg + Bgky, A € Rvxn
Ckzk + Dgy

8
=
I

(28)

o [|[L1T(s)Rill2 <1, [|LoT(s)Ra|l2 < 72, , and
e ||L3T(s)Rs3|]2 minimized .

Matrices L;, R; are selection matrices that specify which channel is involved in the corresponding constraint.
For future use, we introduce the following closed-loop state-space data:

A
0 0 + I 0

lA Bi ] 0 ‘ By | 0 B, [ 0 I|o0
= 0 K ‘ ] ,
Ci | Dn o0 ‘Du 0 Do Cy 0 | Dy

[Ax Bk
|Ck Dk~

With Each channel is associated an LMI constraint of the form encountered in Theorem 3.3. The desired
characterization for output-feedback synthesis with multi-channel specifications can be derived in three steps:

(29)

where

1- introduce a different Lyapunov variable X; for each channel,
2- introduce a variable V' common to all channels,

3- perform adequate congruence transformations and use linearizing changes of variables to end up with
LMI synthesis conditions.

In accordance with the partition of A in (29), we introduce a partition of V and of its inverse W := V1

in the form
Vi1 V12] Wi W12]
Vor Voo’ Wa W’
By the strict nature of the LMI constraints involved and a perturbation argument, there is no loss of

generality in assuming that Va1 and Wo; are invertible. See for instance [4] for a detailed justification. We
then introduce the notation

vie| W |

Iy =

Vor 0] W [0 War

IIy and Il are invertible matrices by the assumptions on Va1, Wy and Hs1, Go1. We can easily infer the
identities

Wiy = Oy, VI =Iy.

Systematic congruence transformations in Iy lead for each channel to matrix inequalities which solely
involves the terms

0L vTAlly = DL Ay, BIVIy = BTy, Cilly,

30
I, VIIy = I, Iy, I, X Iy (30)

10



and possibly involving the selection matrices L; and R;. Explicit computation and inspection of these terms
reveal that by invertibility of Vo; and Wa;, one can perform the following linearizing changes of variables:

Ag = VAW + VEAgWoi + Vi BoCx Wy +

Vo BCoWiy + Vi B D CoWry (31)
Byx := V)Bg+V{{ByDg (32)
C‘K = CgWa + DgCoWiy (33)
Dy = Dg, (34)
X; = OhXTy (35)
U = VIWy + VW, . (36)

The LMI terms in (30) then become

ViiB1 + EKDQI]

T 11 DKV2 K
HVAHVV = ] H\’Bl = |:Bl BQD D21

A+ ByDkCy AWy + BoCx
and
Vi U

I wny
Consequently, sufficient existence conditions for the multi-channel Hy output-feedback synthesis problem can
be recast as an LMI program in the variables AK, BK, CK, DK and Vi1, Wq1, U and X

With the Lyapunov matrix denoted X] = [XLJ XQ,] ; X2’] X3,J], the LMI characterlzatlon for channel

7 is described as

Cillyy = [Cy + D1sDgCy  CiWyy + D15Ck |, MLy = [ ] , I X Ty = X

r —(Vir + V) * * * * * *
—(y-l—I)T R (W11+W11) R * * * *
(VEA + BKCQ)T + Xl,j (A + BQDKCQ) + Xy Jj _Xl,j * *
A\ﬁ + Xaj (AW11 + BQ@K) + Xg’j —X%ﬂ’j —5\(373 * * * < 0.
(V?{Bl + EKDgl)T (Bl + BQﬁKDgl)T 0 0 —~I * *
V11 I 0 0 0 _Xl,j *
I U’ Wi 0 0 0 -XI, -Xy;
)A(l,j * *
X%:j 5\(3,]' * [ >0,
Ci+ D13DgCy CiWii +D12Cx  Z

TrZ <1.

In stark contrast with earlier results, a different Lyapunov function is employed for each channel. Hence
far better results can generally be expected. When a solution to the LMIs has been found, the sought
controller is easily derived from the following simple scheme:

e compute a factorization V21 Wo1 of U — V 1W11 and deduce (invertible) Vo; and Wa;. Note that this is
always possible by perturbation if necessary.

e compute the controller data Ax, Bi, Cx and Dk by reversing the formulas in (31)-(34).

11



7 Concluding remarks

In this work, we have introduced general techniques and tools which have important consequences in the
context of analysis and synthesis with LMIs. Key ideas consist in a specific modification of the Lyapunov
variables and a reciprocal variant of the Projection Lemma which permit to recast LMI characterizations as
augmented LMI representations. These new representations involve (slack) variables which provide additional
degrees of freedom. Of primary importance, they reduce the usually strong interrelations between plant data
and Lyapunov variables.

The impacts of these techniques in analysis with parameter-dependent Lyapunov functions, robust control
of polytopic systems, and more importantly in eigenstructure assignment combined with Lyapunov-type
specifications have been investigated. Also, multi-channel state- and output-feedback syntheses have been
discussed. These results are potentially less conservative as compared to earlier techniques. Moreover, in
some problems such as eigenstructure assignment where earlier techniques are inoperative, they provide
simple and tractable approaches.
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