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Abstract: Significant progress in control design has been achieved by the use of nonsmooth

and semi-infinite mathematical programming techniques. In contrast with LMI or BMI

approaches, these new methods avoid the use of Lyapunov variables, which gives them

two major strategic advances over matrix inequality methods. Due to the much smaller

number of decision variables, they do not suffer from size restrictions, and they are much

easier to adapt to structural constraints on the controller. In this paper, we further develop

this line and address both frequency- and time-domain design specifications by means of a

nonsmooth algorithm general enough to handle both cases.

1 Introduction

Interesting new methods in nonsmooth optimization for the synthesis of controllers have

recently been proposed. See [11, 8] for stabilization problems, [4, 5, 20, 3, 10] for H∞

synthesis, and [3, 6] for design with IQCs. These techniques are in our opinion a valuable

addition to the designer’s toolkit:

• They avoid expensive state-space characterizations, which suffer the curse of dimen-

sion, because the number of Lyapunov variables grows quadratically with the system

size.

• The preponderant computational load of these new methods is transferred to the

frequency domain and consist mainly in the computation of spectra and eigenspaces,

and of frequency domain quantities, for which efficient algorithms exist. This key

feature is the result of the idea of the diligent use of nonsmooth criteria of the form

f(K) = maxω∈[0,∞] λ1 (F (K,ω)), which are composite functions of a smooth but

nonlinear operator F , and a non-smooth but convex function λ1.
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• The new approach is highly flexible, as it allows to address, with almost no additional

cost, structured synthesis problems of the form f(κ) = maxω∈[0,∞] λ1 (F (K(κ), ω)),
where K(·) defines a mapping from the space of controller parameters κ to the space of

state-space representations K. From a practical viewpoint, structured controllers are

better apprehended by designers and facilitate implementation and re-tuning whenever

performance or stability specifications change. This may be the major advantage of

the new approach over matrix inequality methods.

• The new approach is general and encompasses a wide range of problems beyond pure

stabilization and H∞ synthesis. A number of important problems in control theory

can be regarded as structured control problems. Striking examples are simultaneous

stabilization, reliable and decentralized control, multi frequency band design, multidisk

synthesis, and much else.

• Finally, the new methods are supported by mathematical convergence theory, which

certifies global convergence under practically useful hypotheses in the sense that iter-

ates converge to critical points from arbitrary starting points.

In this paper, we expand on the nonsmooth technique previously introduced in [4], and

explore its applicability to structured controller design in the presence of frequency- and

time-domain specifications. We show that the same nonsmooth minimization technique

can be used to handle these seemingly different specifications. We address implementation

details of the proposed technique and highlight differences between frequency and time

domain.

We refer the reader to the articles cited above for references on controller synthesis using

nonsmooth optimization. General concepts in nonsmooth analysis can be found in [12], and

optimization of max functions is covered by [23]. Time response shaping is addressed at

length in [13, 15, 17]. These techniques are often referred to as the Iterative Feedback

Tuning (IFT) approach, mainly developed by M. Gevers, H. Hjalmarsson and co-workers.

2 Time- and frequency domain designs

P

K

yu

w z

Tw→z(K) :=

Figure 1: standard interconnection
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Consider a plant P in state-space form

P (s) :





ẋ
z
y



 =





A B1 B2

C1 D11 D12

C2 D21 D22









x
w
u



 , (1)

where x ∈ R
n is the state vector of P , u ∈ R

m2 the vector of control inputs, w ∈ R
m1

the vector of exogenous inputs or a test signal, y ∈ R
p2 the vector of measurements and

z ∈ R
p1 the controlled or performance vector. Without loss, it is assumed throughout that

D22 = 0.

The focus is on time- or frequency domain synthesis with structured controllers, which

consists in designing a dynamic output feedback controller K(s) with feedback law u =
K(s)y for the plant in (1), having the following properties:

• Controller structure: K(s) has a prescribed structure.

• Internal stability: K(s) stabilizes the original plant P (s) in closed-loop.

• Performance: Among all stabilizing controllers with that structure, K(s) is such

that either the closed-loop time response z(t) to a test signal w(t) satisfies prescribed

constraints, or the H∞ norm of transfer function ‖Tw→z(K)‖∞ is minimized. Here

Tw→z(K) denotes the closed-loop transfer function from w to z, see figure 1.

For the time being we leave apart structural constraints and assume that K(s) has the

frequency domain representation:

K(s) = CK(sI − AK)−1BK + DK , AK ∈ R
k×k, (2)

where k is the order of the controller, and where the case k = 0 of a static controller

K(s) = DK is included. A further simplification is obtained if we assume that preliminary

dynamic augmentation of the plant P (s) has been performed:

A →

[

A 0
0 0k

]

, B1 →

[

B1

0

]

, etc.

so that manipulations will involve a static matrix

K :=

[

AK BK

CK DK

]

∈ R
(k+m2)×(k+p2) . (3)

With this proviso, the following closed-loop notations will be useful:

[

A(K) B(K)
C(K) D(K)

]

:=

[

A B1

C1 D11

]

+

[

B2

D12

]

K [C2 D21 ] . (4)

Structural constraints on the controller will be defined by a matrix-valued mapping

K(.) from R
q to R

(k+m2)×(k+p2), that is K = K(κ), where vector κ ∈ R
q denotes the
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independent variables in the controller parameter space R
q. For the time being we will

consider free variation κ ∈ R
q, but the reader will be easily convinced that adding parameter

restriction by means of mathematical programming constraints gI(κ) ≤ 0, gE(κ) = 0 could

be added if need be. We will assume throughout that the mapping K(.) is continuously

differentiable, but otherwise arbitrary. As a typical example, consider MIMO PID controllers,

given as

K(s) = Kp +
Ki

s
+

Kds

1 + ǫs
, (5)

where Kp, Ki and Kd are the proportional, the integral and the derivative gains, respectively,

are alternatively represented in the form

K(s) = DK +
Ri

s
+

Rd

s + τ
, (6)

with the relations

DK := Kp +
Kd

ǫ
, Ri := Ki, Rd := −

Kd

ǫ2
, τ :=

1

ǫ
, (7)

and a linearly parameterized state-space representation is readily derived as

K(κ) =

[

AK BK

CK DK

]

=





0 0 Ri

0 −τI Rd

I I DK



 , AK ∈ R
2m2×2m2 . (8)

Free parameters in this representation can be gathered in the vector κ obtained as

κ :=









τ
vec Ri

vec Rd

vec DK









∈ R
3m2

2+1 .

We stress that the above construction is general and encompasses most controller structures

of practical interest. We shall see later that interesting control problems such as reliable

control are also special cases of the general structured design problem.

With the introduced notation, time-domain design is the optimization program

minimize
κ∈Rq

f∞(κ) with f∞(κ) := max
t∈[0,T ]

f(κ, t)

where the case T = ∞ is allowed. See section 3.1.2 for further details and other practical

options.

Frequency-domain design is the standard H∞ problem and can be cast similarly using

the definition

f∞(κ) := sup
ω∈[0,∞]

σ̄(Tw→z(K(κ), jω)) = ||Tw→z(K(κ))||∞ .
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3 Nonsmooth descent method

In this section we briefly present our nonsmooth optimization technique for time- and

frequency-domain max functions. For a detailed discussion of the H∞ norm, we refer

the reader to [4, 5]. The setting under investigation is

minimize
κ

max
x∈X

f(κ, x) , (9)

where the semi-infinite variable x = t or x = ω is restricted to a one-dimensional set X.

Here X may be the halfline [0,∞], or a limited band [ω1, ω2], or a union of such bands in

the frequency domain, and similarly in the time domain. The symbol κ denotes the design

variable involved in the controller parametrization K(·), and we introduce the objective or

cost function

f∞(κ) := max
x∈X

f(κ, x) .

At a given parameter κ, we assume that we can compute the set Ω(κ) of active times

or frequencies, which we assume finite for the time being:

Ω(κ) := {x ∈ X : f(κ, x) = f∞(κ)} . (10)

For future use we construct a finite extension Ωe(κ) of Ω(κ) by adding times or frequencies

to the finite active set Ω(κ). An efficient strategy to construct this set for x = ω has been

discussed in [4, 5].

For the ease of presentation we assume that the cost function f is differentiable with

respect to κ for fixed x ∈ Ωe(κ), so that gradients φx = ∇κf(κ, x) are available. Exten-

sions to the general case are easily obtained by passing to subgradients, since f(., x) has a

Clarke gradient with respect to κ for every x ∈ X [12]. Following the line in Polak [23], see

also [4], we introduce the optimality function

θe(κ) := min
h∈Rq

max
x∈Ωe(κ)

−f∞(κ) + f(κ, x) + hT φx + 1
2hT Qh, (11)

Notice that θe is a first-order model of the objective function f∞(κ) in (9) in a neighborhood

of the current iterate κ. The model offers the possibility to include second-order information

[2] via the term hT Qh, but Q ≻ 0 has to be assured. For simplicity, we will assume Q = δ I
with δ > 0 in our tests.

Notice that independently of the choices of Q ≻ 0 and the finite extension Ωe(κ) of

Ω(κ) used, the optimality function has the following property: θe(κ) ≤ 0, and θe(κ) = 0 if

and only if 0 ∈ ∂f∞(κ), that is, κ is a critical point of f∞. In order to use θe to compute

descent steps, it is convenient to obtain a dual representation of θe. To this aim, we first

replace the inner maximum over Ωe(κ) in (11) by a maximum over its convex hull and we

use Fenchel duality to swap the max and min operators. This leads to

θe(κ) := max
∑

x∈Ωe(κ) τx=1, τx≥0
min
h∈Rq

∑

x∈Ωe(κ)

τx(f(κ, x) − f∞(κ) + hT φx) + 1
2hT Qh .
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These operations do not alter the value of θe. The now inner infimum over h ∈ R
q is now

unconstrained and can be computed explicitly. Namely, for fixed τx in the outer program,

we obtain the solution of the form

h(τ) = −Q−1





∑

x∈Ωe(κ)

τxφx



 . (12)

Substituting this back in the primal program (11) we obtain the dual expression

θe(κ) = max
τx≥0,

∑

x∈Ωe(κ)

τx=1

∑

x∈Ωe(κ)

τx (f(κ, x) − f∞(κ)) − 1
2

(

∑

x∈Ωe(κ)

τxφx

)T

Q−1

(

∑

x∈Ωe(κ)

τxφx

)

.(13)

Notice that in its dual form, computing θe(κ) is a convex quadratic program (QP). As

a byproduct we see that θe(κ) ≤ 0 and that θe(κ) = 0 implies κ is critical that is,

0 ∈ ∂f∞(κ).

What is important is that as long as θe(κ) < 0, the direction h(τ) in (12) is a de-

scent direction of f∞ at κ in the sense that the directional derivative satisfies the decrease

condition

f ′
∞ (κ;h(τ)) ≤ θe(κ) − 1

2

(

∑

x∈Ωe(κ)

τxφx

)T

Q−1

(

∑

x∈Ωe(κ)

τxφx

)

≤ θe(κ) < 0,

where τ is the dual optimal solution of program (13). See [5, Lemma 4.3] for a proof. In

conclusion, we obtain the following algorithmic scheme:

Nonsmooth descent method for minκ f∞(κ)

Parameters 0 < α < 1, 0 < β < 1.

1. Initialize. Find a structured closed-loop stabilizing controller K(κ).
2. Active times or frequencies. Compute f∞(κ) and obtain the set of active

times or frequencies Ω(κ).
3. Add times or frequencies. Build finite extension Ωe(κ) of Ω(κ).
4. Compute step. Calculate θe(κ) by the dual QP (13) and thereby

obtain direction h(τ) in (12). If θe(κ) = 0 stop. Otherwise:

5. Line search. Find largest b = βk such that f∞(κ + bh(τ)) < f∞(κ) − αbθe(κ)
and such that K(κ + b h(τ)) remains closed-loop stabilizing.

6. Step. Replace κ by κ + b h(τ) and go back to step 2.

Finally, we mention that the above algorithm is guaranteed to converge to a critical

point [4, 5], a local minimum in practice.

3.1 Nonsmooth properties

In order to make our conceptual algorithm more concrete, we need to clarify how (sub)differential

information can be obtained for both time- and frequency-domain design.
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3.1.1 Frequency-domain design

In the frequency domain we have x = ω. The function f∞(κ) becomes f∞(κ) = ||.||∞ ◦
Tw→z(.) ◦ K(κ), which maps R

q into R
+, and is Clarke subdifferentiable as a composite

function [21, 4, 3]. Its Clarke gradient is obtained as K′(κ)∗∂g∞(K), where K′(κ) is the

derivative of K(.) at κ, K′(κ)∗ its adjoint, and where g∞ is defined as g∞ := ||.||∞◦Tw→z(.)
and maps the set D ⊂ R

(m2+k)×(p2+k) of closed-loop stabilizing controllers into R
+.

Introducing the notation

[

Tw→z(K, s) G12(K, s)
G21(K, s) ⋆

]

:=

[

C(K)
C2

]

(sI −A(K))−1 [B(K) B2 ] +

[

D(K) D12

D21 ⋆

]

.

(14)
the Clarke subdifferential of g∞ at K is the compact and convex set of subgradients

∂g∞(K) := {ΦY : Y ∈ S(K)} where

ΦY = g∞(K)−1
∑

ω∈Ω(K)

ℜ
{

G21(K, jω)Tw→z(K, jω)HQωYω(Qω)HG12(K, jω)
}T

,

(15)
and where S(K) is the spectraplex

S(K) = {Y = (Yω)ω∈Ω(K) : Yω = (Yω)H � 0,
∑

ω∈Ω(K)

Tr (Yω) = 1, Yω ∈ H
rω}.

In the above expressions, Qω is a matrix whose columns span the eigenspace of Tw→z(K, jω)Tw→z(K, jω)H

associated with its largest eigenvalue λ1

(

Tw→z(K, jω)Tw→z(K, jω)H
)

of multiplicity rω.

We also deduce from expression (15) the form of the subgradients of f(κ, ω) := σ̄(Tw→z(K(κ), jω))
at κ with fixed ω, which are used in the primal and dual programs (11) and (13), respectively

φx = ΦYω
= K′(κ)∗f(κ, ω)−1ℜ

{

G21(K, jω)Tw→z(K, jω)HQωYω(Qω)HG12(K, jω)
}T

where Qω is as before and Yω ∈ H
rω , Yω � 0, Tr (Yω) = 1. Finally, we note that

all subgradient formulas are made implementable by expliciting the action of the adjoint

operator K′(κ)∗ on elements F ∈ R
(m2+k)×(p2+k). Namely, we have

K′(κ)∗F =
[

Tr (∂K(κ)
∂κ1

T
F ), . . . ,Tr (∂K(κ)

∂κq

T
F )
]T

.

In the general case, where some of the maximum eigenvalues at some of the frequencies in

the extended set Ωe(κ) has multiplicity > 1, the formulas above should be used, and the

dual program in (13) becomes a linear SDP [4, 5]. This is more expensive than a QP, but

the size of the SDP remains small, so that the method is functional even for large systems.

When max eigenvalues are simple, which seems to be the rule in practice, matrices Yω are

scalars, and the primal and dual subproblems become much faster convex QPs. This feature,

taken together with the fact that Lyapunov variables are never used, explains the efficiency

of the proposed technique.
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3.1.2 Time-domain design

We now specialize the objective function f∞ to time-domain specifications. For simplicity of

the exposition, we assume the performance channel w → z is SISO, that is m1 = p1 = 1,

while the controller channel y → u remains unrestricted.

As noted in [9], most specifications are in fact envelope constraints:

zmin(t) ≤ z(κ, t) ≤ zmax(t) for all t ≥ 0 (16)

where z(κ, .) is the closed-loop time response to the input signal w (typically a unit step

command), when controller K = K(κ) is used, and where −∞ ≤ zmin(t) ≤ zmax(t) ≤
+∞ for all t ≥ 0. This formulation offers sufficient flexibility to cover basic step response

specifications such as rise and settling times, overshoot and undershoot, or steady-state

tracking. Several constraints of this type can be combined using piecewise constant envelope

functions zmin and zmax. A model following specification is easily incorporated by setting

zmin = zmax = zref , where zref is the desired closed-loop response.

For a stabilizing controller K = K(κ), the maximum constraint violation

f∞(κ) = max
t≥0

max
{

[z(κ, t) − zmax(t)]+, [zmin(t) − z(κ, t)]+
}

, (17)

where [.]+ denotes the threshold function [x]+ = max{0, x}, is well defined. We have

f∞(κ) ≥ 0, and f∞(κ) = 0 if and only if z(κ, .) satisfies the constraint (16). Minimizing

f∞ is therefore equivalent to reducing constraint violation, and will as a rule lead to a

controller K(κ̄) achieving the stated time-domain specifications. In the case of failure, this

approach converges at least to a local minimum of constraint violation.

The objective function f∞ is a composite function with a double max operator. The

outer max on t ≥ 0 makes the program in (17) semi-infinite, while the inner max, for

all t ≥ 0, is taken over f1(κ, t) = z(κ, t) − zmax(t), f2(κ, t) = zmin(t) − z(κ, t) and

f3(κ, t) = 0.

Assuming that the time response κ 7→ z(., t) is continuously differentiable, f∞ is Clarke

regular and its subdifferential is

∂f∞(κ) = co t∈Ω(κ)

{

co i∈I(κ,t)∇κfi(κ, t)
}

, (18)

where Ω(κ) is the set of active times defined by (10), and I(κ, t) = {i ∈ {1, 2, 3} : f(κ, t) = fi(κ, t)}.
More precisely, for all t ∈ Ω(κ),

co i∈I(κ,t)∇κfi(κ, t) =































{∇κz(κ, t)} if z(κ, t) > zmax(t)
{−∇κz(κ, t)} if z(κ, t) > zmin(t)
{0} if zmin(t) < z(κ, t) < zmax(t)
[∇κz(κ, t), 0] if z(κ, t) = zmax(t) > zmin(t)
[−∇κz(κ, t), 0] if z(κ, t) = zmin(t) < zmax(t)
[−∇κz(κ, t),∇κz(κ, t)] if z(κ, t) = zmin(t) = zmax(t)

(19)



International Conference on High Performance Scientific Computing 9

Clearly, as soon as the envelope constraint is satisfied for one active time t ∈ Ω(κ), either

one of the last four alternatives in (19) is met, we have f∞(κ) = 0 for all t ≥ 0 so that

0 ∈ ∂f∞(κ) and κ is a global minimum of program (9). The computation of the descent

step only makes sense in the first two cases, i.e., when f∞(κ) > 0. Notice then that the

active times set Ω(κ) can be partitioned into

Ω1(κ) := {t : t ∈ Ω(κ), f1(κ, t) = f∞(κ)}
Ω2(κ) := {t : t ∈ Ω(κ), f2(κ, t) = f∞(κ)}

(20)

and the Clarke subdifferential ∂g∞(K) is completely described by the subgradients

ΦY (K) =
∑

t∈Ω1(K)

Yt∇Kz(K, t) −
∑

t∈Ω2(K)

Yt∇Kz(K, t) (21)

where Yt ≥ 0 for all t ∈ Ω(K), and
∑

t∈Ω(K) Yt = 1.

Remark. The hypothesis of a finite set Ω(κ) may be unrealistic in the time domain

case, because the step response trajectory z(·, t) is not necessarily analytic or piecewise

analytic, and may therefore attain the maximum value on one or several contact intervals

[t−, t+], where t− is the entry time, t+ the exit time, and where it is reasonable to assume

that there are only finitely many such contact intervals. In that case, our method is easily

adapted, and (11) remains correct in so far as the full contact interval can be represented by

three pieces of information: the gradients φx of the trajectory at x = t−, x = t+, and one

additional element φx = 0 for say x = (t− + t+)/2 on the interior of the contact interval.

(This is a difference with the frequency domain case, where the functions ω 7→ f(κ, ω) are

analytic, so that the phenomenon of a contact interval could not occur).

A more systematic approach to problems of this form with infinite active sets would

consist in allowing choices of finite sets Ωe(κ), where Ω(κ) 6⊂ Ωe(κ) is allowed. This leads

to a variation of the present algorithm discussed in [6, 24, 7], where a trust region strategy

replaces the present line search method.

Gradient computation By differentiating the state-space equations (1) with respect

to Kij , we get















∂̇x
∂Kij

(K, t) = A ∂x
∂Kij

(K, t) + B2
∂u

∂Kij
(K, t)

∂z
∂Kij

(K, t) = C1
∂x

∂Kij
(K, t) + D12

∂u
∂Kij

(K, t)
∂y

∂Kij
(K, t) = C2

∂x
∂Kij

(K, t)

(22)

controlled by
∂u

∂Kij
(K, t) = ∂K

∂Kij
(K, t)y(K, t) + K ∂y

∂Kij
(K, t)

= yj(K, t)ei + K ∂y
∂Kij

(K, t)
(23)

where ei stands for the i-th vector of the canonical basis of R
m2 . It follows that the partial

derivative of the output signal ∂z
∂Kij

(K, t) is the simulated output of the interconnection in
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figure 2, where the exogenous input w is held at 0, and the vector yj(K, t)ei is added to

the controller output signal. We readily infer that nu ×ny simulations are required in order

to form the sought gradients.

K

yjei

0

+

+

∂y
∂Kij

∂u
∂Kij

∂z
∂Kij

P

Figure 2: interconnection for gradient computation

This way of computing output signal gradients by performing closed-loop simulations

is at the root of the Iterative Feedback Tuning (IFT) method, intially proposed in [17]

for SISO systems and controllers. This optimization technique has originated an extensive

bibliography (see [16, 15, 13] and references therein) and was extended to multivariable

controllers [14]. Most of these papers illustrate the IFT with a smooth quadratic objective

function, minimized with the Gauss-Newton algorithm. In [18], the nonsmooth absolute

error is used, but a differentiable optimization algorithm (DFP) is applied. Our approach

here differs both in the choice of the nonsmooth optimization criterion f∞, and in the design

of a tailored nonsmooth algorithm as outlined in section 3.

Practical aspects The active time sets Ω1(K) and Ω2(K) are computed via numerical

simulation of the closed-loop system in response to the input signal w, see figure 1. This

first simulation determines the time samples (tl)0≤l≤N that will be used throughout the

optimization phase. Measured output values
(

y(tl)
)

must be stored for subsequent gradient

computation. The extension Ωe(K) is built from Ω(K) by adding time samples with largest

envelope constraint violation (16), up to nΩ elements in all are retained. According to our

experiments the set extension generally provides a better model of the original problem as

captured by the optimality function θe (11) and thus descent directions (12) with better

quality are obtained. The gradients ∇Kz(K, tl) (for t ∈ Ωe(K)) result from nu × ny

additional simulations of the closed-loop (figure 2) at the same time samples (tl)0≤l≤N .
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4 Conclusion

We have described a general and very flexible nonsmooth algorithm to compute locally

optimal solutions to synthesis problems subject to frequency- or time-domain constraints.

Our method offers the new and appealing possibility to integrate controller structures of

practical interest in the design. We have now several encouraging reports of successful

experiments, which advocate the use of nonsmooth mathematical programming techniques

when it comes to solving difficult (often NP-hard) design problems. The results obtained

in this paper corroborate previous studies on different problem classes. Extension of our

nonsmooth technique to problems involving a mixture of frequency- and time-domain con-

straints seems a natural next step, which is near at hand. For time-domain design, we have

noticed that the proposed technique assumes very little about the system nature, except the

access to simulated responses. A more ambitious goal would therefore consider extensions

to nonlinear systems.
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