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Abstract—in this paper, we address the robust filtering problem  that is

for a wide class of systems whose state-space data assume a ver A B B
general nonlinear dependence in the uncertain parameters. Our (@) a(a) ()
resolution methods rely on new linear matrix inequality character- Cla)  Da(a) D(a)
izations of Hz and H ., performances, which, in conjunction with Ca(a) Da.(a) D,(a)
suitable linearization transformations of the variables, give rise to L(c) Daa(a) M(a)
practical and computationally tractable formulations for the ro- 0 Aw) 0

bust filtering problem. A, Baj B

Index Terms—Ltinear matrix inequality (LMI), nonlinear s C; Dan; D

s S

parameterization, robust filtering. _ a;j | Ca; Da.; D.; )
j=1 Lj DAAj M]
|. INTRODUCTION 0 A; 0
HROUGHOUT this paper, we consider the uncertaifote that an equivalent representation of system (1) is the NFT
NFTIir;(e)?r:]jtystem in the nonlinear fractional transformation #(t) A0)  B(a) Ba(a)
(NFT) y(t) | = | [Cla) Do) | +| Dala) |A(w)
&(t) A(a)  Ba(a) B(a) z(t) L(e) M(a) Daa(a)
ot) | _ | Cla) Dae) Dl || A0 -
2a(t) Ca(@) Das(a) Dofa) | |0 x(I = Da:(@)A(a)) ™ [Cala) D.(a)]
z(t) L(a) Daa(a) M(a) '
wa(t) = Ala)zal(t 1 (1)
At) =A(@)za(t) (1) x[w(t) . @)

where A(a) € R™™", Ba(a) € R"™, B(a) € R™™™,  Clearly, the uncertain parameterenters the system represen-
D(a) € R”™, Ca(a) € R™2*", L(er) € R, andz € R"  tation (3) in a highly nonlinear manner. This is in stark contrast
is the statey € R” is the measured output,c R? is the output \yjth the linear parameter dependence of polytopic representa-
to be estimatedy € R™ is the disturbance, anda € R™*  tjons [8], [14], [17]. Obviously, any polytopic system is also a
andza € R™2 are introduced to materialize the uncertaint)(,articmar case of (1) or (3) witth (o) = 0. Alternatively, the
component of the system. The uncertain parameteassumed NFT system (1) can be transformed into a standard linear frac-
to evolve in the unit simpleX’ tional transformation (LFT) representation [18], whexeonly
is allowed to depend on uncertain parameters. This amounts to
: augmenting the dimension of the uncertainty chanmnel za.
[i= g, ) Z aj=1,0a;200. However, it is our opinion that this alternative representation
7=l dramatically deteriorates the performance of practical solution
The state-space data in (1) is assumed linear in the parametemeth()d.s’ as lllustrated in Section V. . .
The filtering problem for the uncertain system (1) consists of

constructing an estimator or “filter” in the form
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whereT'(w, z—zr) denotes the transfer function from the inputWhen there is a possibility of ambiguity, we use, for instance,
signalw to the error signat — zr. The notation|.||;) desig- I, 0., to indicate the dimensions of matrices. The boldface
nates the generalizeH, norm, wheread|.|| . designates the capital letters such 8%, K, R, etc., are used to emphasize ma-
H_, norm. The scalap satisfies) < p < 1 and plays the role trix variables.
of a trade-off coefficient. The meaning of these norms is further
clarified in the sequel of the paper. A. Useful Tools

The robust filtering for this general uncertain systems hasBelow, we recall a number of technical tools that are useful
not been considered in the literature so far. A particular cagethe derivations.
of theH, _(Kalman) filtering for_polytopic systems has beenad- Congruence transformation of matriceEhe matrix M
dressed in [8] and [14] by using the common Lyapunov func- s negative definite (positive definite, respectively) if and
tion approach and in [17] by using the much less conservative only if 7T MT is negative definite (positive definite, re-
parameter-dependent Lyapunov function approach. The mixed  gpectively) for any nonsingular matrik of appropriate

H2 / H o filtering for linear nominal systems (with no parameter dimension. The matrif’” M T is called congruent ta/
«) has been particularly investigated in [9], [12], and [15] with via the congruence transformatiéh

different approaches and applications. In this paper, we propose. schur's complement formulas
a novel approach to handle the filtering problem where both pa-

_ i _ ,{\_411 M12 _
rameter-dependent Lyapunov functions and parameter-dep <0 My <0, My — MMy ML <0
dent multipliers are utilized. Namely, our purpose is twofold. [ M{; Mo, /

» We introduce new linear matrix inequality (LMI) charac- & My <0, My — MEM M <0
terizations for theH, and theH., performances in the
context of uncertain NFT systems. The currently known
LMI characterizations are potentially conservative in the
sense that they use a common Lyapunov function, regard-
less of the parameter values. With our new LMI character-
izations, this weakness is partially eliminated.

« We establish new LMI-based techniques for the above ro- U+ PTXTQ +QTXP <0
bust mixedH,/H filtering problems. In addition, as a
byproduct, a new method for the mixeth/H. filtering
for the nominal case is derived, which, according to exper-
iments, is much less conservative than the results in [9]. NEUNp <0, and Ng\PNQ <0.

Note that the optimization formulation in [10] for the
H..filter of a particular class of LFT requires solving a * Linearly parameterized matrix inequality (LPMI) over the
nonlinear matrix inequality in the decision variables and, thus, ~ Unit simplexi’: The parameterized inequality

for any matricesMy,, M15, Mo Of appropriate dimen-
sions.

* Projection lemmg6]: Given a symmetric matrixt €
R™*™ and two matrices?, Q of column dimensionn,
the LMI problem

is solvable with respect tX of compatible dimension if
and only if

does not provide a practical technique in general. s

The structure of the paper is as follows. Section Il discusses Z o; L;(P) <0, Vael (7)
equivalent LMI characterizations of performances that will be j=1
used throughout the paper. These characterizations fokthe is feasible in the decision variabR if and only if the

andH.. norms of NFT systems are introduced in Sectionllland  fg|lowing system of matrix inequalities is feasiblelh
exploited in Section IV for filtering problems. Numerical tests

and comparisons validating the proposed methods are given in L;(P)<0, j=1,2 ..., s (8)
Section V. Finally, an Appendix provides a proof of the central
result of Section II.

The notation throughout the paper is fairly standaetf. is
the transpose of the matrix/, whereas\,, is any basis of
its null space. For symmetric matrice] — N < 0 (M — As itis well known, a major advantage of the LMl approach in
N > 0, respectively) means thatl — N is negative definite comparison to classical techniques is to provide additional flex-
(positive definite, respectively). In symmetric block matrices dbility to tackle a wide range of challenging problems such as
long matrix expressions, we useas an ellipsis for terms that multiobjective controls, robust control with real uncertain pa-

Here,L;(P) are arbitrary matrix-valued functions B¥.

Il. AUXILIARY RESULTS

are induced by symmetry, e.g., rameters, linear parameter-varying control, etc. An important
restriction, however, is that a single parameter-free Lyapunov
S+ () = T S+ ST MT T function is used for checking the system performances. Such a
(%) K'=K K" : . . o
M Q M Q drawback entails conservativeness of solutions and often limits

the practical appeal of LMI methods.
In addition, in long matrix expressions involving matrix func- For discrete-time systems, this weakness has been partly
tions of the parameter, we use the shorthand eliminated in [4] and [11]. For linear continuous systems, a
genuine extension for stability analysis ahd performances
My % _ [ Mi1(@) ME(a) 6 has been proposed in [3] and [17], where the Lyapunov matrix
[Mu Mzz] () = [Mlg(a) M22(a)} ' ©) and system matrices containing design parameters are to some
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extend separated. However, extensions to NFT systems in (1b) WhenC' = 0, the feasibility of (9) inX is equivalent to the

remain challenging. In this section, we describe some alterna-
tive LMI formulations that are revealed to be very practical for

the robust filtering problem.

Theorem 1:
a) The LMI
ATX +XA XB CT
) X>0, BTX Quu Q2] <0

C Qly Q2

©)

feasibility of (12) inX, V for i = 1, i.e., the feasibility
in X, V of the LMl is as in (14), shown at the bottom of
the page.

See the Appendix for proofs.

Remark: As compared with (9), the advantage of the formu-
lations (10)—(14) is that the Lyapunov varial¥eis, to some
extent, separated from the data matriges3, C usually con-
taining the design variables. This will yield additional freedom
for using different Lyapunov variableX associated with var-
ious specifications. LMI (11) is useful for the analysis problem

but not for the synthesis purpose because it involves two slack

is feasible the decision variab® if and only if there is variablesV andV; that render the linearization of the problem
scalan, > 0 such that either one of the LMIs, which are as difficult task. The form in (13) has proved to be the most useful
in (10)—(13), shown at the bottom of the page, is feasibir our filtering context. Wher’ = 0, however, one should def-

in the decision variableX, V andV;.

initely use the simple form in (14).

- ATV +VTA VB CT X-VT ATV
BTV BTV
i) X >0, @u - Q2 . <0 (10)
C QT, Q»n 0
LX -V +uVTA uVTB 0 —2u(V +VT)
ATV 4+ VT4 VIR 0T X -vVT 4 ATV,
BTV BTV
i) X >0, @n - Q2 ! <0 (11)
c QL Qa2
L X-V+Via VvIB 0 —(Vi+VY)
—(V+VT)y vIiA+X VIB 0 A%
ATV +X —uX o o7 0
iV) BTV 0 Qll Q12 0 <0 (12)
0 c QL, Qx»n 0
i A% 0 0 0 —X/ul
—u(V+VT) VIA4+X VIB 0 pVT]
ATV + X -X o ¢ o
V) BTV 0 Qu Q2 0 <0 (13)
0 c Qfy  Qx 0
i N 0 0 0 -X |
-(V+VT)y vIigA+X viBp o VT
ATV +X -X 0 0 0
Vi) X >0, BTV 0 Q11 Q12 0 <0 (14)
0 0 Qs Qn 0
A% 0 0 0 -X
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A. Symmetric Scaling in NFT

LMI C HARACTERIZATIONS FORNORM CONSTRAINTS

1809

We first note that it is possible to rewrite the overall system

(1) and (4) with the error signal, = z — zr explicitly as

et (t) Aa(a)  Baa(a) Ba(a)| | zalt)
Za(t) Cala) Da:(a) D.(a)| | wa(t)
zcl(f) Lo(a) Dan(a) M(a) w(t)
wa =A(a)za (15)
where
|z _ A(a) 0
ae (3] aio-[all 2]
_ | Ba(a) _ | B(a)
Baale) = [BFI%A(OJ)] - Bale) = [BFD(G)}
Ca(a) =[Ca(a) 0], La(a)=[L(a) -Lr]. (16)

In order to characterize the relationships betwegrandz

we will use a specific class of scalings already introduced in [13]

(see also [4])

ZAR;(a)za + whS;(a)wa >0, Si(a)<0,i=1,2

17

ZAR(a)za + waS(a)wa >0, S(a) <0 (18)
for all nonzerowa, za satisfying (15) andv € T'. Substituting

wa = A(a)za into (18) yields

(18) & zA(R(a) + AT(a)S(a)A(a))za >0, Vza
o (R+ATSA)(a) >0
R AT .
& | A (a) > 0 (by Schur's complement).
(19)
Analogously, (17) is equivalent to
i T
[1} _Asfl} (@)>0, =12 (20
Choosing a linear parameter dependence in the form
R R
Z aj | Sy (21)
S S;
and according to the inequalities
—S(a)"' >GTS(a)G + (G + GT) VG (22)

it is not difficult to see thaR;(«), S;(«), R(«), S(«) satisfy
(20), (19) if there are matriceH;, G of the same dimension
such that

R;j ATH]

>0,
H;Aj S+ (H; +H)| = 7

1=1,2;7=1,2...,s
(23)

R; A]TGT
> = .
{GAj S, +(G+an| 2% J=h2ens (29
B. Hs>-Norm Characterization
In this subsection, we assume that
M(a) =
Daa(a)A(a)(I = Da-(a)A(a)) 1D, () =0 (25)

and consider th{»-norm characterization for system (15).

Assume thaR;(«), S;(«) satisfy (20), i.e., (17) holds true.
If there are matriceX(«) > 0 andZ(«) > 0 such that

& X (@za()] + A (OR (@24 (1)
+ wk(B)S1(a)wat) - w2 < 0 (26)
Lon®)2a(t) + 2L (HRa(a)2a ()
+ wk(#)Sa(@)wat) - [ZhHX()zaH] <0 (27)
then, for allwa, za satisfying (15), we have
C X (@ral] - w2 <0 (28)
LB W)za(t) — b OX (@)ra() <0 (29)

The latter inequalities lead to

)< [ o as

2L () za(t) < vl () X(a)za(t) < 1//0 ||lw(s)||? ds

T

cl

X :L'pl

(H)X

implying

“+oo
sup |z (8)2 < v / (1) dt
t 0

=v||w|2, VYwée Ly (30)
that is, theH,-norm of system (43) is less than

Now, rewriting the left-hand side of inequalities (26) and (27)
as quadratic functionals ifx, w, w) and by a Schur’s com-
plement argument, the following result is obtained.

Lemma 1: One has

2
max [ T(w, z)|y < v (31)

if there are symmetric matrixXX(«) > 0 and scalings
R;(a), S;(«) satisfying (20), and moreover

ATX—}-XACI > k
Bgcl Sl *
[BZ]X {0 _I} o <o
Ca [Da. D.] -Ri!
Va el (32)
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X * * and hence
0 SQ * *
_ <0, Vael. T T
Ca Da. —Ryt o« |0 / o / 2
c(t < t)||” dt 38
Ly Dana 0 —vI ) llzet (2] g . llw(t)]] (38)
(33)

for all za, wa satisfying (15). This is equivalent to saying that
0 theH.-norm of system (15) is less thanAgain, rewriting the
Thanks to Theorem 1, one can provide an alternative forgft-hand side of (36) as a quadratic functionalin wa, w)
of the’H, performance that facilitates tractability of the robustnd by a Schur’s complement argument, the following result is
filtering problem. obtained.
Theorem 2: The feasibility of inequalities (20), (32), and Theorem 3: The performance constraint
(33) with respect taX(«) and S;(a), R;(«) defined in (21)
characterizing the performance bound in (31) is equivalent to max [[T(w, za)lleo < v (39)
the existence of > 0 such that inequality (23) and the inequal-
ities (34) and (35), shown at the bottom of the page, are feasilsiesatisfied whenever there a¥«) > 0 andR(«), S(«) sat-

in X(a), V(), S;(a), Ri(a), Fi(«), andH;. O isfying (19), and moreover
C. Hoo-Norm ALY + YA, * * *
A very similar result can be established for tHe, perfor- [Bzcz} [S * } . .
mance. ConsideR(«a), S(«a) satisfying (19) andY (a) > 0 B% 0 -1
such that Ca [Dr. D.] -R7T %
d, ¢ T T c [Dan M] 0 —I
— [z ()Y ()za(t)] + 24 (OR(a)za(t) + wa(t cl AA v
S LROY (@)ra(®)] + 2K (R (0)7a (1) +wE (D) ot T

xS(a@)wa(t) + 77 za @)l = vlw(®)[* < 0. (36)
By virtue of Theorem 1, the feasibility of (19) and (40) in

Then Y (a), S(a), R(a) is equivalent to the feasibility of (24) and
d 1 ) 5 the inequalities in (41), shown at the bottom of the page, in
Y (@ (0)] + 7z = Aw @I <0 BT Y(a), V(a), Fla), G, andy > 0. 0

[—u(V +VT) * * * x ]
Bgcl Sl *
[B[S }V 0] [0 —I} * * | () <0, Vael (34)
0 F.CAh F, [DAZ Dz] R, — (Fl + F{) *
Y 0 0 0 -X |
-X * * * 7
0 82 *
, r
FoCa FoDa. Ry — (Fy+ FT) (o) <0, Ya e (35)
Lo Dan 0 —v] |
i —,u(V + VT) * * * * * ]
.AZ;V +Y -Y * * * *
Bgcl S *
[ gi |V O 0 I * " l(a)<0, Vaerl (41)
0 FCn F[Dar. D.] R—(F+FY) =«  «
0 Lo [Daa M] 0 —~I %
i wV 0 0 0 0 -Y |
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IV. ROBUST FILTERS FORNFT amination of (45) reveals that there is only one bilinear term

This section aims at developing a constructive method for tHB’OIVmg the filter variableK and the slack variabl¥’
T

robust filtering problem. To this end, we systematically exploit
. . . - T~T _ F
the performance characterizations in (34) and (41). As clarified KTV = [ AT} [Var Vi
later in the text, this task becomes quite immediate by choosing F
parameter-independent matrices YorF;, and F: whereV is partitioned as
V(e)=V, Fi(o)=F;, F(o)=F, Vael. V= [V“ V”] , Vi€ RV (46)
Va1 Vo /

From now an, the following shorthand notations are used: With this in mind, the problem can be turned into a standard

0, I, I LMI program through the following procedure [4]:
T = , ©= , O,= P |, IT=[I, I,]

I, 0, P Oy » Define
. . o 1 0
With the matrix definitions =
IIv [0 V2_21V21} . 47
C; 0O, - .
Bj =[Ba; Bjl, Cj= [07 I” } « Introduce the auxiliary variables
~ ~ —1
Dj = [DAj D]] ) Dzj = [DAzj Dzj] (42) V = |:Y1 Y2:| = |: Vll V12V22 V21 :|
Vs V; VIVL Vo VEVLIVy
we have =05 VIly
. <. — 117 Y% . [T A _v7T
[64] 8”} =0A;0", [Caj Oman]=Ca;0" Xj =y X,lly, K= [BFl Ar]=VaKily
mon =[ViiBr V3 ArVy, Vo] (48)
[Oiii Ol::n} =0B;, [OZZ:JA 013;} =0,D;. for which it is easily verified that

0TVIly = [V, V,]=0TVv

It follows that A, , Bae , and B.. defined in (16
(@), Baci(a) (@) (16) yO =TLO =6, TTVIly = Vol (49)

can be rewritten as affine functions of the filter varialle=

[BF Ar] nycl =iy, HyK™Y"Vily =K"Z. (50)
[Ac | Bact Ber](a) « Perform in (45) the congruence transformation
=Y a; (04,07 | ©B;]+ TK[C; | ©,D;]). (43) diag[lly Iy I I IIy].
=1
! This leads to the identities
A. RobustH, Filter nyeATe’vily =eaTe’V
Choosing the parameter-dependent Lyapunov varisljte) Ny K™Y VIly =C/K"T
in (34) and (35) as B]T@TVHV _ B]T@Tv
i F1CA;0TIly =F,CA;07
X(a) = X 44
() ;1 4 “44) DIOIK Y VIly = DY oI IEK Y Vily

_ _ _ =DTOTK"T. (51)
andS;(a), R;(«) according to (21), inequality (34) becomes

an LPMI [see (7)] and therefore reduces to the finite set of in- As a result, (45) is reduced to the inequality in (52), shown
equalities as in (45), shown at the bottom of the next page. Ext-the bottom of the next page, X;, R;;, S;;, K, V, Fy, p,

r —u(V+VT) * * * % ]
OATOTV + CTKTYTV +X;  -X; . "
BTOTV + DTOTKTTTV 0 [SS]' _’; } ] . | <o
0 F.C0007  F\D.; Ry - (Fi+F0) o«
i v 0 0 0 X, |

i=1,2,...,5 (45)
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which is nonlinear in the scalar > 0 only. Thus, by using a Therefore, (55) follows by inversely derivindr, Br, Lr
line search inu, we can check the feasibility of (52) by solvingfrom AF BF Lrin (48) and (54). O
a sequence of LMI problems.

On the other hand, performing the congruence transformatiBn +__ Filter

diag[Tly I T I] The LMI-based formulation for the robusi, filter can be
obtained by a similar sequence of arguments.

ifn”(35) and using the structure 6f («) in (16) leads to the . Choose the parameter-dependent Lyapunov variable as
ollowing LMI:

-X; % * * Y(a) = Z ;Y. (57)
0 Sy * * 1 <o j=1
FyCaj0" FoDa.j Roj— (F2+FJ)
[ —Lr]  Daa; 0 —vI « Partition (46) and the auxiliary variablag K, L defined
i=1,2,...,s (53) from (48), (54), and
where Y
) Y_]:H%;'Y_]HV, j:172,...73
Lr = LFV2_21V21~ (54)

with ITy defined by (47).

Summing up, based on Theorem 2, we have established the fol- .
» Apply the congruence transformation

lowing.

Theorem 4:There exists a filter (4) that satisfies the esti-
mation condition (31) whenever therejis> 0 such that the
LMI constraints (23), (52), and (53) are feasiblé\in X ;, S, _ S o
R,;, K, andﬂp, H,, F;. to (41) in combination with the relations in (51).

The matrix dataA -, By, L defining the filter (4) can be It follows that the nonlinear matrix (41) reduces to the in-
derived from the solutions of the matrix inequalities (23), (52gqualities in (58), shown at the bottom of the page.
and (53) in the form Theorem 5: There is a filter (4) that satisfies the robust es-

A R A timation condition (39) whenever therejis> 0 such that the
Ap=ApVy", Br=Bp, Lp=LpV;". (55) LMis(24),(58)are feasible iV, Y;,S;, R;, K, Lp, G,and

dlag[Hv IIv I I I Hv]

Proof: For agiven mAatn)ZV amatrixV satisfying (48) is The filter dataA r, By, Ly defining the filter (4) can be
vV — Vv, V2V (56) derived from the solutions of the LMIs (24) and (58) according
Loyt to the formulas in (55).
[ —u(v + VT) * * * x|
OATOTV +CTKTI+X;  -X; * x x
BTOTV + DTOTKTT 0 [S“’ ) } x « | <0, j=1,2...s (52
J J p 0 _Im
0 FchjGT Flpzj le - (Fl + Ff) *
i Y 0 0 0 -X; |
I —u(V + VT) * * % * x ]
@AJT@TV + CJTKTI + Y]' —Y]- * * * *
~ ~ Sj *
Bj0"V + DIOIK'T 0 * % *
0 —vln, <0
0 FCA]'@T FDZJ' Rj — (F + FT) * *
0 [L; —Lr]l [Daa; M;] 0 -, x
I uv 0 0 0 0 Y,

j=1,2...,5 (58)
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C. MixedHy/H. Filter e LFT
As the direct consequence of Theorems 4 and 5, we have the

following result regarding the optimal mixed filter problem (5). Ala) =Qo+ [z 02 02 Ir 0y 02]A(a)
Theorem 6: Under the assumption (25), a suboptimal robust

filter (4) for problem (5) can be solved by the following opti- 02 @1 02 0y Q3 057
N i 02 Oz Iz 02 02 02
mization problem:
w | Ly — 02 02 02 02 02 O2] \(
o min 270y 0y 02 0p Qo 0
V.X;,Y;,8:;,R:;,8;,R; K.Lp H; F; HF p,v,~y 02 02 02 02 02 _[2
x[pr + (1 = p)7]: (23), (24), (52), (53), and (58). (59) 0 0y Oy 0y 0y 0y
The matrix dataA , By, L defining the suboptimal filter (4) o
can be derived from the solutions of the optimization problem 0y
(59) according to the formulas in (55).
| 2| A= |@fs O (64)
5 Os 2l
V. NUMERICAL EXAMPLES 05 .
The example below clarifies how different model parameter- L 12
izations as well as how different optimization formulations may . ) .
lead to dramatically different filter performances. Consider the ~ Which leads to the LFT in (1) with
robust filtering for the system:
. A=Qo, Ba=[Ia 02 0y Iy 0y 0]
(¢) Ala) B (1)
yt)|=| C D {w(f)} (60) 02 Q1 02 02 Q3 0 Qa
2(t) L 0 ' Oz 02 Ip 02 02 O 02
. O 02 02 0o 02 02 I
with Dn, = , Ca=
, A 02 02 02 02 QQ 02 / A Q5
A(2) =Qo + a}Q1 + a3Q2 + 105Q3 + 1 Q4 + 2Qs O 02 02 02 02 I 02
0o [07 -10] , _[o3 02 Oz 02 02 02 02 02 I
7] 01 -o05)" ' 01 02 DA =0, Daa =0. (65)
[0.2 0.1 04 0.1 _ _ _ _ _
Q2 = 02 03] Q3 = 0.15 0.1 Note that the dimension 12 ef\ in the LFT (64) is three times
) larger than the one of the NFT in (62). This has a very detri-
Q4 = 0.25 0-25} Q5 = [0-25 0 } mental effect on the computational efficiency and on the esti-
0.1 0.25 )" ? 0.1 025 mation performance of the filter, as described in Table I. Note
9 0 that computations were performed with the MATLAB LMI con-
B = 1 0} , C=[-100 100] trol toolbox [7]. Note also that an averaged running time of LMI
- programs for NFT (62) is about 12 s, whereas its counterpart
D=[0 1], L=[1 0]. (61) for LFT (64) is much longer. The tradeoff between fiig, and

Two alternative representations of the uncertain system c?ﬁ pgrformanges by using both para_tmeter-dependgnt_Lyapu_nov
be used in the construction of the filter. unction and single Lyapunov function are clearly indicated in

NFT Table Il. The benefit obtained from the use of parameter-depen-
* dent Lyapunov functions is also significant in our computations.
Ala) = Qo+ 01Qs + a2Qs5 + [ ]z azly] {

Q1 Qs }
02 @2 APPENDIX
y |:a1[2 0y } |:a1[2:| 62) PROOF OFTHEOREM 1
Oz agly| | asly Equation (9)< (10): Rewrite (10) as
which leads to NFT (1) with

0 0 cT X

Ala) = a1(Qo + Q1) + a2(Qo + @5) 0 Qi Q2 0

Ba(a) = [a1 ]y asls] [Ql Qﬂ C Qf, Qan 0

O Q@
X 0 0 0
I
Ala) = {0&2 022]2] , Da,=0 g;
+ 0 V[I 0 0 pl]+(x)p <0. (66)
Cala) = Bjﬂ D. =0 1

DA =0, Daan=0. (63) In order to use the projection lemma, we need to compute the
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TABLE |

COMPUTATIONAL PERFORMANCES OFDIFFERENT MODEL REPRESENTATIONS

model

‘H.-performance

‘H,-performance

mixed performance for p = 0.8

NFT (62)

3.2592

0.0325

3.7545

LFT (64)

3.4590

3.5650

400

TABLE 1l

PERFORMANCES OFFILTERS FORNFT SYSTEMS WITH DIFFERENTWEIGHTS p
AND USING PARAMETER-DEPENDENTL YAPUNOV FUNCTIONS ORWITH FIXED
LYAPUNOV FUNCTIONS (IN PARENTHESIS

p | mixed performance

Hoo value

H, value

0.1 6.7389(7.6133)

3.7082(14.4215)

7.0756(6.8569

0.3 6.0244(8.4078

3.3862(9.2827)

7.1551(8.0328

0.4 5.6376(8.4329

3.2381(8.0423)

3.0869(7.1583)

)
)
7.2373(8.6934)
7.3603(9.4164)

0.7 4.2965(7.4454

2.7696 (5.5167)

7.8593(11.9458)

)
)
0.5 | 5.2236(8.2874)
)
)

0.9 3.1177(5.5604 2.4107(4.2182) | 9.4810(17.6399)

nullspaces

O NO O

b
0
Mr o o uj=| o
I

O ~NO

Nia B o —1)= (67)

Thus, by the projection lemma, (66) is feasibl&virif and only

if
0 0 cT
0 Qll QIZ
C Qf, Qx
X 0 0 0
ATX + XA XB
= BTX Qll

T
¢ 12

X
0
(% .

o~
O ~NO O

I
0
0
A
CT
Q12
Q22

X I

<0

and
0 cT
Quu Q12 O
Ry Qxn 0
0 0 0
—2uX 0 —pCT
= 0 Qi1 Qu2
—uC  QT,  Qa

Qu Q21 'To

& X p/2[0 CT][ } [ ]<o
o Qa ¢

(by Schur's complement).

()

~ o o
S O NO
S ~NO O

0
0
c
X

<0

Inequality (66) is therefore equivalent to (68) and (69), which
readily imply (9). Conversely, assume we know a solution to (9).
It is also a solution to (68) and (69), provided thais chosen
to be a sufficiently small positive quantity. This proves that (9)
implies (10) by virtue of the projection lemma.

Equation (11} (9): If (9) is feasible inX, then (11) can
be readily shown to be feasible f&f = X, V; = uX with
psufficiently small.

Conversely, suppose there &e V, V; satisfying (11). This
can be rewritten as

0 * * *
0 Qll k k
C Qf Qxn *
X 0 0 0
AT
BT
+ 0 [V 0 0 Vi]+(x)p<0. (70)
-1
Again, we obtain (9) by projecting onm’[A B 0 —IJ
Equation (12)= (9): Rewrite (12) as
0 X 0 0 0
X —uX 0 0 0
0 0 Qu Q2 0
0 C Qfy Qa 0
0 0 0 0 -X/u
-1
AT
+{|BT|VI[I 0 0 0 0]+(%)p<0. (71)
0
1

(68)  Again, the explicit form of relevant nullspaces are

rA B 0 I
I 000
N[_IABOI]:0]00
0 0 I 0
Lo 0 0 I
00 0 0
I 000
Mr oooo0=|071 00
00 I 0
o 0 0 I

(69) From the projection lemma applied to (71) with respecVto
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Equation (9)= (12): Clearly, forX satisfying (9), there is
au > 0 such that (73) holds. By the projection lemma, thi
together with (72) [which is equivalent to (9)], is sufficient fo
the existence oV satisfying (12). Furthermore, for = 0, (73)
automatically holds true fqgi = 1, and thus, together with (72),
implies (14) as well.

Finally, the equivalence between (12) and (13) follows fro
the congruence transformation digs/ I I I ul] ap-
plied to (12) and the change of variabl&s «— uX, V «
uV. O
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