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Robust Filtering for Uncertain Nonlinearly
Parameterized Plants
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Abstract—In this paper, we address the robust filtering problem
for a wide class of systems whose state-space data assume a very
general nonlinear dependence in the uncertain parameters. Our
resolution methods rely on new linear matrix inequality character-
izations of 2 and performances, which, in conjunction with
suitable linearization transformations of the variables, give rise to
practical and computationally tractable formulations for the ro-
bust filtering problem.

Index Terms—Linear matrix inequality (LMI), nonlinear
parameterization, robust filtering.

I. INTRODUCTION

T HROUGHOUT this paper, we consider the uncertain
linear system in the nonlinear fractional transformation

(NFT) format

(1)

where , , ,
, , , and

is the state, is the measured output, is the output
to be estimated, is the disturbance, and
and are introduced to materialize the uncertainty
component of the system. The uncertain parameteris assumed
to evolve in the unit simplex

The state-space data in (1) is assumed linear in the parameter,
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that is

(2)

Note that an equivalent representation of system (1) is the NFT

(3)

Clearly, the uncertain parameterenters the system represen-
tation (3) in a highly nonlinear manner. This is in stark contrast
with the linear parameter dependence of polytopic representa-
tions [8], [14], [17]. Obviously, any polytopic system is also a
particular case of (1) or (3) with . Alternatively, the
NFT system (1) can be transformed into a standard linear frac-
tional transformation (LFT) representation [18], whereonly
is allowed to depend on uncertain parameters. This amounts to
augmenting the dimension of the uncertainty channel .
However, it is our opinion that this alternative representation
dramatically deteriorates the performance of practical solution
methods, as illustrated in Section V.

The filtering problem for the uncertain system (1) consists of
constructing an estimator or “filter” in the form

(4)

which provides good robust estimation of the outputin (1). In
the present paper, such a good estimation is based on the mixed

criterion

(5)
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where denotes the transfer function from the input
signal to the error signal . The notation desig-
nates the generalized norm, whereas designates the

norm. The scalar satisfies and plays the role
of a trade-off coefficient. The meaning of these norms is further
clarified in the sequel of the paper.

The robust filtering for this general uncertain systems has
not been considered in the literature so far. A particular case
of the (Kalman) filtering for polytopic systems has been ad-
dressed in [8] and [14] by using the common Lyapunov func-
tion approach and in [17] by using the much less conservative
parameter-dependent Lyapunov function approach. The mixed

filtering for linear nominal systems (with no parameter
) has been particularly investigated in [9], [12], and [15] with

different approaches and applications. In this paper, we propose
a novel approach to handle the filtering problem where both pa-
rameter-dependent Lyapunov functions and parameter-depen-
dent multipliers are utilized. Namely, our purpose is twofold.

• We introduce new linear matrix inequality (LMI) charac-
terizations for the and the performances in the
context of uncertain NFT systems. The currently known
LMI characterizations are potentially conservative in the
sense that they use a common Lyapunov function, regard-
less of the parameter values. With our new LMI character-
izations, this weakness is partially eliminated.

• We establish new LMI-based techniques for the above ro-
bust mixed filtering problems. In addition, as a
byproduct, a new method for the mixed filtering
for the nominal case is derived, which, according to exper-
iments, is much less conservative than the results in [9].

Note that the optimization formulation in [10] for the
-filter of a particular class of LFT requires solving a

nonlinear matrix inequality in the decision variables and, thus,
does not provide a practical technique in general.

The structure of the paper is as follows. Section II discusses
equivalent LMI characterizations of performances that will be
used throughout the paper. These characterizations for the
and norms of NFT systems are introduced in Section III and
exploited in Section IV for filtering problems. Numerical tests
and comparisons validating the proposed methods are given in
Section V. Finally, an Appendix provides a proof of the central
result of Section II.

The notation throughout the paper is fairly standard. is
the transpose of the matrix , whereas is any basis of
its null space. For symmetric matrices, (

, respectively) means that is negative definite
(positive definite, respectively). In symmetric block matrices or
long matrix expressions, we useas an ellipsis for terms that
are induced by symmetry, e.g.,

In addition, in long matrix expressions involving matrix func-
tions of the parameter, we use the shorthand

(6)

When there is a possibility of ambiguity, we use, for instance,
, to indicate the dimensions of matrices. The boldface

capital letters such as , etc., are used to emphasize ma-
trix variables.

A. Useful Tools

Below, we recall a number of technical tools that are useful
in the derivations.

• Congruence transformation of matrices: The matrix
is negative definite (positive definite, respectively) if and
only if is negative definite (positive definite, re-
spectively) for any nonsingular matrix of appropriate
dimension. The matrix is called congruent to
via the congruence transformation.

• Schur’s complement formulas:

for any matrices of appropriate dimen-
sions.

• Projection lemma[6]: Given a symmetric matrix
and two matrices of column dimension ,

the LMI problem

is solvable with respect to of compatible dimension if
and only if

and

• Linearly parameterized matrix inequality (LPMI) over the
unit simplex : The parameterized inequality

(7)

is feasible in the decision variable if and only if the
following system of matrix inequalities is feasible in:

(8)

Here, are arbitrary matrix-valued functions of.

II. A UXILIARY RESULTS

As it is well known, a major advantage of the LMI approach in
comparison to classical techniques is to provide additional flex-
ibility to tackle a wide range of challenging problems such as
multiobjective controls, robust control with real uncertain pa-
rameters, linear parameter-varying control, etc. An important
restriction, however, is that a single parameter-free Lyapunov
function is used for checking the system performances. Such a
drawback entails conservativeness of solutions and often limits
the practical appeal of LMI methods.

For discrete-time systems, this weakness has been partly
eliminated in [4] and [11]. For linear continuous systems, a
genuine extension for stability analysis and performances
has been proposed in [3] and [17], where the Lyapunov matrix
and system matrices containing design parameters are to some
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extend separated. However, extensions to NFT systems in (1)
remain challenging. In this section, we describe some alterna-
tive LMI formulations that are revealed to be very practical for
the robust filtering problem.

Theorem 1:

a) The LMI

i) (9)

is feasible the decision variable if and only if there is
scalar such that either one of the LMIs, which are as
in (10)–(13), shown at the bottom of the page, is feasible
in the decision variables and .

b) When , the feasibility of (9) in is equivalent to the
feasibility of (12) in for , i.e., the feasibility
in of the LMI is as in (14), shown at the bottom of
the page.

See the Appendix for proofs.
Remark: As compared with (9), the advantage of the formu-

lations (10)–(14) is that the Lyapunov variable is, to some
extent, separated from the data matrices usually con-
taining the design variables. This will yield additional freedom
for using different Lyapunov variables associated with var-
ious specifications. LMI (11) is useful for the analysis problem
but not for the synthesis purpose because it involves two slack
variables and that render the linearization of the problem
a difficult task. The form in (13) has proved to be the most useful
in our filtering context. When , however, one should def-
initely use the simple form in (14).

ii) (10)

iii) (11)

iv) (12)

v) (13)

vi) (14)
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III. LMI C HARACTERIZATIONS FORNORM CONSTRAINTS

A. Symmetric Scaling in NFT

We first note that it is possible to rewrite the overall system
(1) and (4) with the error signal explicitly as

(15)

where

(16)

In order to characterize the relationships betweenand ,
we will use a specific class of scalings already introduced in [13]
(see also [4])

(17)

(18)

for all nonzero satisfying (15) and . Substituting
into (18) yields

(18)

(by Schur's complement).

(19)
Analogously, (17) is equivalent to

(20)

Choosing a linear parameter dependence in the form

(21)

and according to the inequalities

(22)

it is not difficult to see that satisfy
(20), (19) if there are matrices of the same dimension
such that

(23)

(24)

B. -Norm Characterization

In this subsection, we assume that

(25)

and consider the -norm characterization for system (15).
Assume that satisfy (20), i.e., (17) holds true.

If there are matrices and such that

(26)

(27)

then, for all satisfying (15), we have

(28)

(29)

The latter inequalities lead to

implying

(30)

that is, the -norm of system (43) is less than.
Now, rewriting the left-hand side of inequalities (26) and (27)

as quadratic functionals in and by a Schur’s com-
plement argument, the following result is obtained.

Lemma 1: One has

(31)

if there are symmetric matrix and scalings
satisfying (20), and moreover

(32)
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(33)

Thanks to Theorem 1, one can provide an alternative form
of the performance that facilitates tractability of the robust
filtering problem.

Theorem 2: The feasibility of inequalities (20), (32), and
(33) with respect to and defined in (21)
characterizing the performance bound in (31) is equivalent to
the existence of such that inequality (23) and the inequal-
ities (34) and (35), shown at the bottom of the page, are feasible
in , and .

C. -Norm

A very similar result can be established for the perfor-
mance. Consider satisfying (19) and
such that

(36)

Then

(37)

and hence

(38)

for all satisfying (15). This is equivalent to saying that
the -norm of system (15) is less than. Again, rewriting the
left-hand side of (36) as a quadratic functional in
and by a Schur’s complement argument, the following result is
obtained.

Theorem 3: The performance constraint

(39)

is satisfied whenever there are and sat-
isfying (19), and moreover

(40)

By virtue of Theorem 1, the feasibility of (19) and (40) in
is equivalent to the feasibility of (24) and

the inequalities in (41), shown at the bottom of the page, in
, and .

(34)

(35)

(41)



TUAN et al.: ROBUST FILTERING FOR UNCERTAIN NONLINEARLY PARAMETERIZED PLANTS 1811

IV. ROBUST FILTERS FORNFT

This section aims at developing a constructive method for the
robust filtering problem. To this end, we systematically exploit
the performance characterizations in (34) and (41). As clarified
later in the text, this task becomes quite immediate by choosing
parameter-independent matrices for, , and :

From now on, the following shorthand notations are used:

With the matrix definitions

(42)

we have

It follows that , , and defined in (16)
can be rewritten as affine functions of the filter variable

(43)

A. Robust Filter

Choosing the parameter-dependent Lyapunov variable
in (34) and (35) as

(44)

and according to (21), inequality (34) becomes
an LPMI [see (7)] and therefore reduces to the finite set of in-
equalities as in (45), shown at the bottom of the next page. Ex-

amination of (45) reveals that there is only one bilinear term
involving the filter variable and the slack variable

where is partitioned as

(46)

With this in mind, the problem can be turned into a standard
LMI program through the following procedure [4]:

• Define

(47)

• Introduce the auxiliary variables

(48)

for which it is easily verified that

(49)

(50)

• Perform in (45) the congruence transformation

diag

This leads to the identities

(51)

As a result, (45) is reduced to the inequality in (52), shown
at the bottom of the next page, in , , ,

(45)
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which is nonlinear in the scalar only. Thus, by using a
line search in , we can check the feasibility of (52) by solving
a sequence of LMI problems.

On the other hand, performing the congruence transformation

diag

in (35) and using the structure of in (16) leads to the
following LMI:

(53)

where

(54)

Summing up, based on Theorem 2, we have established the fol-
lowing.

Theorem 4: There exists a filter (4) that satisfies the esti-
mation condition (31) whenever there is such that the
LMI constraints (23), (52), and (53) are feasible in , ,

, and .
The matrix data , defining the filter (4) can be

derived from the solutions of the matrix inequalities (23), (52),
and (53) in the form

(55)

Proof: For a given matrix , a matrix satisfying (48) is

(56)

Therefore, (55) follows by inversely deriving
from in (48) and (54).

B. Filter

The LMI-based formulation for the robust filter can be
obtained by a similar sequence of arguments.

• Choose the parameter-dependent Lyapunov variable as

(57)

• Partition (46) and the auxiliary variables defined
from (48), (54), and

with defined by (47).
• Apply the congruence transformation

diag

to (41) in combination with the relations in (51).
It follows that the nonlinear matrix (41) reduces to the in-

equalities in (58), shown at the bottom of the page.
Theorem 5: There is a filter (4) that satisfies the robust es-

timation condition (39) whenever there is such that the
LMIs (24), (58) are feasible in , , , and

.
The filter data defining the filter (4) can be

derived from the solutions of the LMIs (24) and (58) according
to the formulas in (55).

(52)

(58)
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C. Mixed Filter

As the direct consequence of Theorems 4 and 5, we have the
following result regarding the optimal mixed filter problem (5).

Theorem 6: Under the assumption (25), a suboptimal robust
filter (4) for problem (5) can be solved by the following opti-
mization problem:

(23), (24), (52), (53), and (58). (59)

The matrix data defining the suboptimal filter (4)
can be derived from the solutions of the optimization problem
(59) according to the formulas in (55).

V. NUMERICAL EXAMPLES

The example below clarifies how different model parameter-
izations as well as how different optimization formulations may
lead to dramatically different filter performances. Consider the
robust filtering for the system:

(60)

with

(61)

Two alternative representations of the uncertain system can
be used in the construction of the filter.

• NFT

(62)

which leads to NFT (1) with

(63)

• LFT

(64)

which leads to the LFT in (1) with

(65)

Note that the dimension 12 of in the LFT (64) is three times
larger than the one of the NFT in (62). This has a very detri-
mental effect on the computational efficiency and on the esti-
mation performance of the filter, as described in Table I. Note
that computations were performed with the MATLAB LMI con-
trol toolbox [7]. Note also that an averaged running time of LMI
programs for NFT (62) is about 12 s, whereas its counterpart
for LFT (64) is much longer. The tradeoff between the and

performances by using both parameter-dependent Lyapunov
function and single Lyapunov function are clearly indicated in
Table II. The benefit obtained from the use of parameter-depen-
dent Lyapunov functions is also significant in our computations.

APPENDIX

PROOF OFTHEOREM 1

Equation (9) (10): Rewrite (10) as

(66)

In order to use the projection lemma, we need to compute the
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TABLE I
COMPUTATIONAL PERFORMANCES OFDIFFERENTMODEL REPRESENTATIONS

TABLE II
PERFORMANCES OFFILTERS FORNFT SYSTEMS WITH DIFFERENTWEIGHTS�

AND USING PARAMETER-DEPENDENTLYAPUNOV FUNCTIONS ORWITH FIXED

LYAPUNOV FUNCTIONS (IN PARENTHESIS)

nullspaces

(67)

Thus, by the projection lemma, (66) is feasible inif and only
if

(68)

and

(by Schur's complement). (69)

Inequality (66) is therefore equivalent to (68) and (69), which
readily imply (9). Conversely, assume we know a solution to (9).
It is also a solution to (68) and (69), provided thatis chosen
to be a sufficiently small positive quantity. This proves that (9)
implies (10) by virtue of the projection lemma.

Equation (11) (9): If (9) is feasible in , then (11) can
be readily shown to be feasible for with

sufficiently small.
Conversely, suppose there are satisfying (11). This

can be rewritten as

(70)

Again, we obtain (9) by projecting onto .
Equation (12) (9): Rewrite (12) as

(71)

Again, the explicit form of relevant nullspaces are

From the projection lemma applied to (71) with respect to,
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we infer that

(72)

and

(73)

Now, (72) is trivially equivalent to (9) by a Schur’s complement
argument.

Equation (9) (12): Clearly, for satisfying (9), there is
a such that (73) holds. By the projection lemma, this,
together with (72) [which is equivalent to (9)], is sufficient for
the existence of satisfying (12). Furthermore, for , (73)
automatically holds true for , and thus, together with (72),
implies (14) as well.

Finally, the equivalence between (12) and (13) follows from
the congruence transformation diag ap-
plied to (12) and the change of variables

.
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