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Abstract

The automotive hydro-pneumatic integrated suspension model is nonlinear with large di-
mension. As a consequence, the nonlinear # ., control methodology based on the traditional
Hamilton-Jacoby-Isaacs equation is impractical in this application. An alternative so-called
Parameterized Linear Matrix Inequality (PLMI) approach is proposed for solving this hard
nonlinear H, control problem. The validity of the proposed approach is confirmed not only
by detailed and realistic simulations but also by extensive experiments. Specifically, the pro-
posed nonlinear control method outperforms the more classical feedback linearization control
technique.

Key words. Nonlinear H ., control, Parameterized Linear Matrix Inequalities, Integrated sus-
pension system.

1 Introduction

A research area of intense activity in the past five years is certainly the nonlinear H., control
problem (see e.g. [15, 8]). The central target of nonlinear H., control is to internally stabilize
the nonlinear plant while minimizing the effect of disturbances such as measurement noise, input
disturbances and other exogenous signals which invariably occur in most applications because
of plant interactions with the environment. However, in deep contrast with linear ., control
methods which are flexible, efficient and allow to solve a broad class of linear control problems,
there are few practical methods in nonlinear H., control which can handle real engineering
problems with similar comfort. A prominent obstacle preventing the use of current techniques
is that most of them are based on the Hamilton-Jacoby-Isaacs (HJI) equations to characterize
solutions. It is well known that with the power of available computers, standard numerical
methods for HJI equations are able to solve problems with very low sizes only, say no more than
3 states which rarely suffices for real-world applications. For such hard nonlinear problems,
our opinion is that it is of extreme importance to exploit the specific characteristics. It is not
doubtful that special structures and properties of a given class of systems will play a crucial role
for developing adequate solution methods.

The purpose of the automotive hydro-pneumatic integrated suspension is to improve the ride
comfort by oil flow control to cylinder despite bad road environment or vibrations in the human
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sensitivity band. The ride comfort can be enhanced by attenuating vibration of the car body
in the human sensitivity band, and therefore, #, control with loop-shaping specifications is an
effective methodology. The integrated suspension is different from the pure active suspension
system [19] by the additional presence of the semi-active valve which exhibits nonlinear char-
acteristics. Thus, the control design for the integrated suspension system becomes inevitably
difficult as the resulting model is nonlinear with a large dimension. Therefore, the control design
problem here is a very challenging one in nonlinear #, control.

Perhaps, the most essential characterization of this control system is that its nonlinearity is
caused by the semi-active input. Considering this semi-active input as a parameter, the system
can be viewed as a family of parameter-dependent linear systems. It is well known that the linear
matrix inequality (LMI) approach is a very efficient and powerful tool to solve various problems
for linear systems including linear #, problems [6] thanks to the availability of efficient interior-
point polynomial-time algorithms for solving semidefinite programming problems [7]. In [2, 18],
we have extended the LMI approach to the so-called parameterized LMIs (PLMIs) in order to
solve various challenging problems of linear robust control. The purpose of the present paper is
to take advantage of these results to solve the nonlinear H., control associated with the inte-
grated suspension system. Note that many systems, like the integrated suspension system, with
few state variables responsible of the nonlinearity very frequently arise in practical nonlinear
models. This was our main motivation for proposing an alternative and practical approach to
solve nonlinear H., control for such class of systems. The power and efficiency of the proposed
method are confirmed by realistic simulations but also by experiments on the physical plant.
Particularly, the proposed control is shown to outperforms feedback linearization control and
linear control techniques.

The organization of the paper is as follows. Section 2 deals with the model of the integrated
suspension system with some preliminary structural analysis. Useful theoretical characteriza-
tions involving PLMIs which will constitute our constructive tools are detailed in Section 3.
Justification and validation of the approach are shown through simulations and experiments in
Section 4. We conclude the paper in Section 5 with some remarks and recommendations for
future work.

The notation in the paper is quite standard. Namely, M > 0 or M < 0 for a symmetric
matrix M, means it is negative definite or positive definite. The notation M’ is used for the
transpose of the matrix M.

2 Modeling of controlled integrated suspension system

A quarter-car test bench with two degrees of freedom is shown in Fig.1. This system has two
control valves. The first one is the active control valve which controls the oil flow from hydraulic
pump to suspension cylinder. The second one is the semi-active control valve which controls
the cross sectional area of the pipe between cylinder and accumulator. The semi-active valve
avails to reduce energy consumption (see e.g. [11] for more details about suspension hydraulic
modeling).

The sensitivity band is the limited frequency band within which human is most sensitive
and it is assumed to range from 3 to 8Hz (see [19]). With the assumptions that the oil is
incompressible, the active control valve and the gas spring characteristics are linearized, the
following characterization is obtained.

o The equation for wheel and body motion is [19]:

mié; = k21 — appe, (1)

maly = ApPe (2)
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Figure 1: The active suspension system

e The equation for active control flow is:
4 = _qu‘i — 2Nawa; + kawZuaa (3)

o The equation for cylinder pressure deflection is

k k ay(®1 — 29) + q;|(ap(21 — 29) + ¢;
Pc:—g:n12+—gz/¢-|-p| o(d1 = 22) q2|(2p( 1= &) q). (4)
ap a, 2c2aZ

Here, the meaning of variables and parameters is as follows:

® x(,z1, 29 are displacement of road, wheel and body,

p. is the cylinder pressure deflection,

g; is the active control flow,
® 1, is the input command over active control valve,

as is the cross sectional area of semi-active valve,

a, is the cross sectional area of cylinder,

¢; is the semi-active control valve flow coeflicient,

e k, is the active control valve gain,

kg, k; are gas and tire spring constant,

m1, mo are mass of wheel and body,

p is the oil density,

® w, is the natural frequency of active control valve,
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e 7, is the damping coefficient of active control valve,

® 291,219 and v; are defined as
Tor =29 — T1, T2 =T — T3, V; = /Qidt-

The oil flow in the semi-active valve is defined by

d(2) = ap(21 — &2) + ¢;. (5)
Take u, as the input command over motion of semi-active valve a, which is realized via the
relation
1 1
Pl a—20(1 + us) (6)

where a g is some nominal value of a,.

According to [19], the ride comfort is defined via human feeling while riding, which is affected
by the vibration Z; of the car body. So z, = &, is chosen as the output to be attenuated.
Considering the absolute velocity &g; of the road displacement as the disturbance and expressing
#9 accordingly, the integrated suspension model is represented as

2y = Ap(9)zp + Bpiw + Bpa(9)u,

5 = Cpld)zy + Dp(g)u, @)
where
zp = [z 212 vi &1 @ @ ¢
u = [ug u,]
0 0 0 -1 0 0 0 7
0o 0 0 1 -1 o0 0
0 0 0 o0 0 1 0
Ap(¢) = ai az a3 a4 as ag 0
0 ary ag ag aip ail 0
0 0 0 o0 0 0 1
0 0 0 0 0 a2 a3l
17 [0 07
0 0 0
0 0 0
By = |0 Bp(e)=10 b
0 0 b
0 0 0
| 0] | b3 0 |
Cp(d) = | ag ag ayp aj O]

S
—_
-
~—
|
o o
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and the definitions

ky kg kg
a=—, ay=——", a3 = —
my my mlap
_ pa p _ pa. P
ag = — 9mycla 30|¢(w)|1 as = 2m,cla 2 [p()],
pa k
06 = L2 [4(@)), or= 22, 0= T2,
micla _,0 ma maap
p ;2; pa p ®)
ag = ¢ > 18(z)], a0 = 7~ |8(2)],
mo Cs 80 2m2cs 50
a
aj; = %W(wﬂ’ a2 = —wj, a13 = —2Mawa,
2m2c(i 50 pa
_ __P%
by — T c2 Srmnclal |4(z)| (), by = mpctal, [p(z)|p(2),
bs = kow?.

In order to facilitate the design, the above control model can be linearized via the nonlinear
transformation (see (48) below)

iy = |¢(m)|¢(m) (1 + U.s) _ gb(:b) (9)
| ol

However, the main drawback of the linearization (9) is that the relationship between control i,
and the semi-active valve input a, becomes too complex since it involves the system states and
thus the adjustment of a, for implementing %, becomes very delicate. By its actuator nature, a,
must be limited which means that not any control %, can be implemented by a,. Particularly,
with the nonlinear relation (9) even a small value of %, may cause an arbitrary large value of a,
which is unacceptable from the implementation viewpoint. In contrast, the simple relation (6)
allows a, to be easily adjusted for implementing u,. Certainly, (6) requires that u, > —1 which
can be handled through the choice of appropriate weighting functions discussed below. Also a?
is saturated at its maximal value as u, approaches —1 from the right (see our experiment result
in Section 4).

To achieve improved ride comfort in the human sensitivity band (3 to 8Hz), we introduce the
following frequency weighting function for z,

W(s) = !

82 4+ 2(wps + w?’

(10)

with natural frequency w, = 30rad/s(4.8Hz) and damping ration { = 0.4, which leads to the
following characterizations (see Fig. 2):

e At low frequency the gain of G(s) is small (0.003) so in the interval 1 ~ 2Hz, it can
efficiently suppress the car body’s resonance.

e At the human sensitivity band 3 ~ 8 Hz the gain of G(s) becomes larger with a peak value
(0.004) attained at 4.8H z, to attenuate the vibration of car body for improving the ride
comfort.

e Outside the sensitivity band, the gain of G(s) becomes eventually small to maintain the
road holding performance.

The state space representation of function W (s) is

2, = Auzy,+ Buz
Zy = szwa
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Figure 2: The weighting function

with the numerical data:

0o 1 0
Ao = [—900 —24]’ Bo = [2.7]’ Co=[1 0.

Now, gathering the state-space representations of (7) and (11) and taking the road holding
condition and the energy consumption (control input) into account, the generalized plant of our
nonlinear problem is rewritten as

i = A(¢)z+ Biw+ Ba(d)u,
[C:c (12)

with the notations

Zp Ap () 0 ] [Bpl] [ Bp2(9) ]
z= , A(o) = ,B1 = ,B = ,
]ae= e a)m= ] me =550
_[Q. 0 _ [wee 0 w1t O O 0 0 O O
C_[O C’w]’D_[O wse’Qc_[O wi2 0 0 0 0 0]’
and
e wy; = 0.2 is the weighting constant corresponding to road holding performance zy; =

o — Z1;
e wis = 0.03 is the weighting constant corresponding to car attitude 12 = 21 — @9;
® w,. = 0.0015 is the weighting constant corresponding to active control input u,;
e w,. = 0.0015 is the weighting constant corresponding to semi-active control input u,.

Note that the above values of wg;, w19, w,. ans w,, have been chosen through experiments based
on the following common trade-offs:

o With wq; increased, the road holding performance is improved but then the ride comfort

is degraded;

e With w;9 increased the car attitude performance is improved by suppressing the fluctuation
of suspension stroke but then the ride comfort is degraded;
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e With w,. increased, the semi-active control u, becomes smaller and avoids saturation of
the semi-active valve a, but its ability for improving the ride comfort becomes less efficient.
The dependence of the active control u, on its weight w,, is similar and moreover there is
also a trade-off between semi-active and active controls, as well as between the ride comfort
and the energy consumptions u, and u,. As the later experiments show, due to addition
of semi-active control, the ride comfort performance can be achieved with reduced energy
consumption.

Now, it becomes clear that our problem of improving the ride comfort is nothing else than a
disturbance attenuation problem (i.e. Ho, control). Hereafter, we provide some related mathe-
matical definitions and formulations. A feedback control

u = u(z) (13)

will be called a y—gain control if it internally stabilizes the system (12) and the following La—
gain condition holds true for the closed-loop system (12)-(13)

T T
/0 ||2(t)|[dt < 72/0 |[w(t)||?dt, YT >0, Yw € Ly(0,T) (14)

with zero state initial conditions (i.e z(0) = 0). The H control problem for the system (12) is
to find a y—gain control u(z) with minimal y > 0.

Clearly, (12) is a nonlinear system with 9 state variables, so the traditional approach based
on HJI equation cannot be applied to solve the H, control problem. Referring to equations (8),
we see that (12) is nonlinear by the presence of the semi-active input ¢(z) defined by (5). For
physical reasons, ¢(z) cannot take arbitrary values but is restricted in some predefined bounded
set D. Therefore, it is sufficient to design a control such that both internal stability and Ls-
gain conditions (14) are practically fulfilled, i.e. they have to hold whenever ¢(z) € D only.
Therefore, an alternative way to attack the nonlinear H ., problem for the system (12) is to view
the system as a family of linear systems depending on the semi-active input parameter ¢(z).
Suppose that for every fixed ¢ € D, a y—gain linear control is K(¢)z associated with some
matrix K(¢) and a quadratic Lyapunov function z'P(¢)z establishing an Ls-gain condition.
Then, as ¢ is varying as a function of 2, we must find conditions on K(¢(z)) and on

V(z) = 2'P(¢(z))= (15)
such that the nonlinear system (12) with control input
u=K(¢(z))e (16)

satisfy the Lj-gain condition (14). It turns out in the next section that such conditions admit a
tractable formulation in terms of PLMIs.

Note that function V' (z) might appear restrictive. However, such a form is general enough
since the recent max-plus algebra based results [5, 9] show that the value function for a nonlinear
system is indeed piecewise quadratic which obviously has a strong connection with the form (15).

3 PLMI characterization

In this section, we give a detailed discussion of the solution method used in our problem.
First, let us consider the following system

¢ = Au(éd)z+ Bua(d)w
z = Ccl(¢)$+Dcl(¢)w’

where for simplicity of notation, we use ¢ for a function ¢(¢) which depends on time ¢.

(17)
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Lemma 3.1 The system (17) is internally stable and

T T
| lalPde < o7 [ llwlPd, ¥ T > 0, w(.) € Lofo,T] (18)
0 0

if the following matriz inequalities hold true
X(9)+ AL($)X(9) + X(#)Au(¢) X ($)Ba(4) Ca(s)
l B;($)X(¢) —v1 Dy(4) | <0, (19)
Ca(9) De(¢) -
X(¢) >0, (20)

where X () = $X(4(1)).
Proof. It can be inferred that conditions (19), (20), imply the function V(¢,z) = 27 X (¢(t))=
satisfies the following Hamilton-Jacoby inequality for the gain condition (18)

ov(t,z) V(e
max V102 L VG2 14 )0 4 Baw] + 971207~ yllwl ) < 0 (21)
(see e.g. [1, 3, 20] for related issues). O

Now, step back to the nonlinear system (12). Suppose that we seek a feedback control in the
form (16), then the closed-loop system can be represented in the form (17) with

Aa(¢) = A(¢) + B2(4)K(9), Bu(¢) = Bi(4), Cu(¢) = C1 + D12K(¢), Da(¢) =0, (22)

where o 0
012[0], D12=[D]-

The inequality (19) of Lemma 3.1 reads

- X(4) + [A(9) + Ba($) K ()] X (9)
FX@AE) + By (@) OB (APRKOT]
BiX(9) i o |-
i C1+ D12 K(9) 0 —I
[ —P(¢)+ P(¢)A"(¢) + R(¢)" B3 (¢
O s e B PICT + R&)TDL
& <0,
B —~I 0
01P(¢) + D12R(¢) 0 —’)/I
0< P(8) = X7'(8), SP($)= X (&) X(AX(@), R@) = KHX($) (29
~P(¢) + P(9)AT(¢) + A(9)P(¢) B:1 P()CT
& B} —~I 0
C1P(¢) 0 -1
B () I
+| D2 | R($)[T 0 0]+ |0|ET(¢)[Bf(¢) Df 0]<0 (24)
0 0

By an immediate application of the Finsler’s Lemma [4], (24) is in turn equivalent to the existence
of a scalar o such that

~P(¢) + P(¢)A'(¢) + A($)P(¢) P(4)C; By
C1P(9) —~I 0
B B2(¢) 0 —I (25)

[By(¢) Dip 0] < 0
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Furthermore, using a standard least square technique and noting that the matrix Djs is full
column rank, a particular solution K is given as

K(¢) = —(D13D12) "' [D12C1 +vBa(¢) P(9)']. (26)

The reader is referred to [1] and references therein for more details. Thus our focus now becomes
to solving the differential inequality (25), which is still a difficult problem. To the aim of
simplifying this problem, we shall examine some approximated representations of P(¢). Looking
at the nonlinear system (12), we see that the nonlinear terms A(¢) and Bs(¢) can be expressed
as

A(¢) = Ao + || Ax, Bs(¢) = Bag + |¢|¢Bay (27)

where Ag, A1, Byg, B2; are constant matrices.
The structure (27) suggests to seek a solution P(¢) of the inequality (24) in the ad-hoc basis

P(¢) = Po + || P1 + |¢|@Ps, (28)
and thus . .
s ) B(E)PL+2¢(t)pPy  if $2>0
o) = { 40P - 20(0)0P; it $<0 (29)

Note that P(¢$) may be not differentiable at ¢ = 0 but this does not cause any trouble in this
application.

Now, restricting (d), ¢) on the area M x [—mg, mg] with M C R bounded and 0 < mg <1 (¢
in (5) is the oil flow in semi-active valve so such kind of restriction is rather natural) which can
be done by changing A1, B; in (27) if necessary, and with the notation P := (P, P, P»), 6 := q?),
we can rewrite (25) in the form

Mo(P) + 6Mo1(P) + 06 Mo2(P) + ¢M:1(P)

+¢*My(P) + $*M3(P) + ¢*Ma < 0, V(6,9) € M x [0,mq], (30)
Mo(P) — 0Mo1(P) — 06 Mo2(P) — ¢M1(P)

+¢* Mz (P) + ¢*M3(P) + ¢* My < 0, Y(8,4) € M x [-myg,0]. (31)

with the definitions

P0A6 + A()PO P()C{ B, BgoBéO B20D12 0
Myo(P) = C1PRy —yI 0 | —o | D12Bjyy DiaDiy 0] :
B 0 oI 0 0 0
P 0 0 P, 0 0
M01(P) = — 0 0 0 ) M02(P) =-2(0 0 0] ’
0 0 O 0 0 O
PoAg_ + A]_PO + P1A6 + AOP1 P]_C{ 0
M;(P) = C\P; 0o o,
0 0 0
-P2A6 + Ag Py PQC{ 0 Bngéo + BgoBél B21D12 0 (32)
My (P) = C1Py 0 0f-o Dy3By; 0 0f,
I 0 0 0 0 0 0
-PlA{l +4,P 0 0
M»(P) = 0 0 0] )
0 0 0

My(P) = My1(P) + Mao(P), My(P) = Mao(P) — My1(P),
PQAll +A4,P, 0 0 B21Bél 0 0
0 0 0],M4:—a 0 0 0].
0 0 0 0 0 0

M3(P) =
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Let us rewrite (31) in the more compact form

Mo(P) + 0 Mo1(P) + 06 Mo2(P) + ¢M;1(P)

L8N, (P) + ¢* M (P) + $4 1, < 0, V(6,4)€ Mx[0,mg. ¥
with the definitions
go(P) = Mo(P), z[/.rm(P)_: —M01('P),_J\7I0_2 (P) = Mo2(P), (34)
1(P) = My(P), M3(P)=—Ms3(P), My = My.
Analogously, the positive definiteness of P(¢)
P+ |¢|P1 + |p|¢P2 > 0, V ¢ € [~mg, mg]
is rewritten as
Po+ ¢P1 4¢Py > 0, V¢ € [0,mq), (35)
Py + Py — ¢*Py > 0, Yo € [0, mq]. (36)

Summing up, we have to solve (30), (35) and (31), (36) which constitute a set of PLMIs, since
for every fixed values of (6, ¢), they just become standard LMIs. The difficulty of solving PLMIs
is that they involve infinitely many LMIs. In [2, 18], it has been shown how to convert, possibly
conservatively, PLMIs into a finite number of LMIs by using different variants of extreme point
results or convex majorization techniques. The following result is important in that respect.

Lemma 3.2 One has, for all & and M;(P)

. . i1 1 .
o Mi(P)e < gia(9) i= max{¢'a' Mi(Pe, (026 — L—mb)a'Mi(P)e}  (37)
whenever ¢ € [0,mg] and i > 2.
Proof. We have -
. imy i—1
¢ > 52 d— 5™, ¥ 6 € [0,mo] (38)

since the the function in the right hand size of (38) is the tangent to the curve ¢* at mg/2. Thus

. i1 .
. -1 .

o'z’ M;(P)z > (ZZ:EI ¢ — : 5 my)z' M;(P)z whenever z'M;(P)z > 0

imgy
2i-1

1 S
¢'e' M;(P)z < ( 6" 21.1m6):1:'Mi(77)a: whenever 2'M;(P)z <0

and (37) follows. -

Note that function ¢‘z'M;(P)z is convex or concave on ¢ depending on the sign of ' M;(P)z.
However, function g;, is always convex in ¢ since
2' M;(P)z¢* if 2'M;(P)z >0

s i—1 . .
—2' Mi(P)a (5 ¢ — 5imp) if 2'Mz <0

gin(d) { (39)

. R, e | . .
and both functions ¢* and (";"_1 ¢ — 1;1 my) are convex on [0, mg]. The convexity of g;, plays
an important role in the subsequent developments.

Since My is negative semidefinite, by (37) one has

¢*e' Myz < (0.5m3¢ — 0.1875mg)e’ Myz (40)
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In view of (37) and (40),

2'[Mo(P) + 0 Mo1(P) + 8¢ Moz(P) + ¢M1(P) + ¢* Mz (P) + ¢*M3(P) + ¢*Myle <

:I}I[Mo(P) + 0 My, (p) + 0¢M02(P) + oMy (P)]:E‘}‘

max{p?z' Mz(P)z, (mop — 0.25md)a’ My (P)z}+

max{¢3z' M3(P)z, (0.75m3¢ — 0.25m3)z' M3(P)z} + (0.5m¢p — 0.1875ml)z' Myz
and thus (30) is fulfilled if

z'[Mo(P) + 0 Mo1(P) + 00 Moz (P) + ¢M:1(P)]z+

max{¢?z’' M (P)z, (mod — 0.25m3)z' Ma(P)z}+

max{¢®z' Ms(P)z, (0.75mi¢ — 0.25m3)z' M3(P)z}+

(0.5m3¢ — 0.1875md)z' Myz < 0
for all ¢ # 0 and ¢ € [0, mg].
Furthermore, since the left-hand side of (41) is a convex function of ¢ which implies that its
maximum over [0, m,| must be attained on {0,mo} with fixed § € M. Analogously, the maxi-
mum of left-hand side of (41) must be attained on the set vert M of all vertices of M with fixed
¢ € [0, mg]. Hence, it is deduced that the maximum of the left hand side of (41) must be attained
on vert M x [0, mg]. Thus, to check (41) on M x ¢ € [0, myg), it is sufficient to check the inequality
on the finite cardinality set (0, ¢) € vertM x {0,mg}. Then (41) becomes an LMI problem. For
simplicity let us use the following notation to refer to (41) for (4, ¢) € vertM x {0, mo},

Mo(P) + 0 Mo1(P) + 0pMo2(P) + ¢M:1(P)+

max{¢> M(P), (mo¢ — 0.25m3) M2 (P)}+

max{$>Ms(P), (0.75mé — 0.25ml) M3(P)}+
(0.5m3¢ — 0.18756m)Ms < 0

With similar notations, (35), (33) and (36) hold if
Py + ¢P1 + min{¢’ Py, (mod — 0.25m2)P2} > 0  (43)
Mo(P) + 6 Mo1(P) + 0¢Moz(P) + 611 (P)+
max{¢* Mz (P), (mo¢ — 0.25mj) Ma(P)} +
max{$3 M3(P), (0.75m3¢ — 0.25m3) M3(P)} + (0.5mdp — 0.1875mg)Ms < 0  (44)

(41)

(42)

Py + ¢P; 4+ min{—@> Py, —(mo¢ — 0.25m2)P,} > 0  (45)

V(8, ¢) € vertM x {0,mo},

Finally, the LMIs (42)-(45) constitute a sufficient condition for the existence of a y—gain con-
troller of the form (16). Using the solutions Py, P, Py of (42)-(45), the matrix function K(¢)
can be easily computed by using the formula (26).

Remark. Clearly, we can modify the representation (28) as

Py+¢Pi+ ¢*Py if ¢ >0

Pg) = { Py— ¢P, — ¢*Py if ¢ <0 (46)

to get more freedom and improved performance because of the additional variables P; and P;.
Then accordingly, P; and P; replace P, P; respectively in (44)-(45). Using the viscosity solution
approach (see e.g. [8]) it is easy to show that such a P(¢) defined by (46) satisfying (42)-(45)
indeed yields y—gain controllers.

In [17] we have also developed a result for H, control for a class of bilinear systems. The ap-
proach of [17] has been based on the single quadratic Lyapunov rather than parameter-dependent
Lyapunov functions presented here. Clearly, system (12) is not bilinear and even the single Lya-
punov function based approach will result in a PLMI as well.
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4 Experimental results

The controller developed in Section 3 is implemented with a sample period of 5 ms. A hydraulic
shaker simulates road disturbance generated by driving at 50 km/h. For solving the LMIs
(42)-(45), we use the MaTLAB LMI Control Toolbox [7].

The performance of our nonlinear control can be assessed by comparing its performance with
other design methods such as:

e Control with passive suspension having constant damping coefficient,
e Linear H., control for the feedback linearized model of (12) [10, 15, 16].

The passive suspension condition can be realized in our apparatus, by adjusting the semi-active

valve according to
0y = ag, | 222 B2l (47)
ol

where ¢ is the coefficient determining the damping ratio.
On the other hand, if we use the nonlinear transformation (9), then p. in (4) can be expressed

as
kg ]Cg p | ¢0 | . ; P | ¢0 i
Pe = apﬂc:l2 + a_zvi - 2c2aly (p(E1 = 22) F o} + 2ctaly *

Consequently, all a;’s and also b; in (8) are independent of ¢(z), while by, b3 are linearly de-
pendent on ¢(z), so the transformed model of the plant (12) becomes the following exactly
linearized model

& = A(do)z + Biw + Ba(¢o),
[Cm] ’ (48)

D1

z =

where
I

= [ug U] .
Note that the parameters in (9) are chosen so that matrix A in (48) and for the passive suspension
system coincide. Also, the same weighting function is used both for the linear and the nonlinear
‘Hoo control. The linear #,, control theory is readily applied to solve the #., control problem
for system (48).

The frequency responses in Fig.3 and Fig. 4 represent the ratio of the Fast Fourier Trans-
formations (FFT) for the road displacement and body accelerations. Fig.3 shows simulation
results with impulse road displacement (height=0.03 m) and Fig.4 shows experimental results
with random road displacement which expresses actual road surface (driving at 50 km/h). The
time responses of the random road displacement and body acceleration with the nonlinear H o,
controller are shown in Fig. 5. The control effect at human sensitivity frequency band (3 ~ 8
Hz) and lower frequencies are indicated in Fig.3 and 4. Clearly, the control effect of the nonlinear
Hoo control at frequencies lower than 5 Hz is better than that of the linear H, control for the
feedback linearized system (48).

As mentioned in Section 2, since the value of semi-active valve a, is limited, in practical
implementation, we have to saturate a, at its maximal value when it becomes over-limited
which may cause troublesome fluctuations of a,. By (6)

Qg
a, T (49)
and thus such fluctuation can be avoided by making the nonlinear H,, control u, reasonably
small which is possible due to the appropriate weighting constant w,.. In contrast, with (47)
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or (9) in the case of passive suspension and feedback linearization control, such fluctuation is
unavoidable: a, is passive in (9) and a, may be over-limited even if u, is sufficiently small in (9).
Fig. 6 and Fig. 7 showing the active valve flow velocities and semi-active valve cross sectional
area after step disturbances clarify this fact. The control inputs of the nonlinear ‘H,, control
(Fig.6) shows stable responses and a, is instantly suppressed. However, semi-active control input
of the linear Ho, control for the feedback linearized model (Fig. 7) which includes nonlinear
variable transformation shows unstable responses even if active control input (being directly
controlled) shows stable response: a, is fluctuated and frequently suppressed.

Fig. 8 and Fig. 9 display the ride comfort and control inputs with changing weighting con-
stant w,, corresponding to semi-active control input from 0.0015 down to 0.0005. The frequency
response characteristics demonstrate that the ride comfort can be improved by decreasing the
weighting constant corresponding to the semi-active control input. In Fig. 9, the magnitude
of semi-active control input becomes increasing and the magnitude of active control becomes
decreasing with changing weighting constant. Hence, the oil flow which is necessary for active
control becomes decreasing and energy consumption goes down.

Fig. 10 shows a comparison of control performance between our integrated suspension and
the pure active suspension [19]. The pure active suspension has a constant damping coeflicient
and the controller is designed by linear H o, control [16]. The integrated suspension and the pure
active suspension have almost the same control performance. However, the energy consumption
of the integrated suspension is better than pure active suspension as indicated in Fig 11. This
shows that the semi-active valve avails to reduce the energy consumption.

Finally, the semi-active control is an effective tool for the improvement of the ride comfort
with a reasonable energy consumption and this has direct beneficial consequences for the design
of more efficient car control systems.

5 Conclusion

In this paper, we have considered the nonlinear # ., control problem of an integrated suspension
system. A novel approach has been proposed in this context. It is based on a PLMI charac-
terization which provides sufficient conditions for closed-loop stability and performance of the
nonlinear system. The main thrust of this approach, which is seemingly absent in many existing
methodologies, is that it allows to solve nonlinear problems with large state dimensions. The
only limitation appears to be the number of nonlinearities involved in the model description.
When compared to more traditional techniques, it appears that the additional cost required for
solving PLMI problems is more than offset by the advantages provided by the technique in terms
of augmented stability and improved performance. This has been showed by a fairly complete
set of simulations and experiments which finally more than anything else advocate for the use
of the proposed method.

Acknowledgements. The authors are grateful to the associate editor Dr. Kevin A. Wise
and two anonymous reviewers for very helpful comments which have helped to improved the
presentation of this paper.
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Figure 3: Frequency responses of the simulation results: Nonlinear H, control (solid), linear
Hoo control for feedback linearized model (dashed) and passive (grey).
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Figure 4: Frequency responses of the experimental results: Nonlinear H o, control (solid), linear
Ho control for the feedback linearized model (dashed) and passive (grey).
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valve cross sectional area a, (semi-active control input) after step disturbance with the nonlinear

Hoo control.
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Figure 7: Responses of the active valve flow velocity g¢; (active control input) and the semi-active
valve cross sectional area a, (semi-active control input) after step disturbance with the linear
Ho control for the feedback linearized model.
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Figure 10: Frequency characteristics of experimental results: the integrated suspension (solid),
the pure active suspension (dashed) and passive suspension (grey).
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