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Abstract— The mixed H2/H∞ synthesis problem is addressed
via nonsmooth mathematical programming. The proposed algo-
rithm is of first order and can handle any controller structure
of practical interest. Since computations are carried out in
the frequency domain, the method does not suffer dimensional
restrictions like LMI or BMI methods. Global convergence is
established and several numerical tests are presented.

Index Terms— Mixed H2/H∞ synthesis, multi-objective con-
trol, structured controllers design, nonsmooth optimization.

I. INTRODUCTION

Mixed H2/H∞ output feedback control is a multi-objective
design problem, where the feedback controller has to respond
favorably to two concurring performance specifications. Typ-
ically in H2/H∞ synthesis, the H∞-channel is used to enhance
the robustness of the design, whereas the H2-channel guar-
antees the performance of the system.

Due to its importance in practice, mixed H2/H∞ control
has been addressed in various ways. First approaches are
based on coupled Riccati equations in tandem with homo-
topy methods, but the numerical success of these strategies
remains to be established. With the rise of LMIs in the later
1990s, different strategies which convexify the problem be-
came increasingly popular. The price to pay for convexifying
the problem is either a considerable conservatism, or that
controllers have large state dimension [11], [10].

In [15], [16], [17], Scherer develops characterizations
for the H2/H∞ synthesis problem with full-order or Youla
parameterized controllers. The problem is reduced to LMIs
involving Lyapunov and controller matrix variables together
with multipliers. The drawback of this approach is the
presence of Lyapunov variables, which grow quadratically
in the system size. The consequence is that current BMI and
LMI solvers quickly succumb when plants get sizable.

Following [2], [3], [5], [4], we address H2/H∞ synthesis by
a new strategy which avoids Lyapunov variables. This leads
to a nonsmooth and semi-infinite optimization program.

The paper is organized as follows. The H2/H∞ synthesis
problem is introduced in section II. In sections III and
IV we successively present our method and a nonsmooth
algorithm for solving the H2/H∞ problem. After detailing
some technical elements in section V, we discuss numerical
examples to validate our algorithm in the last section.
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II. PROBLEM SETTINGS

We consider a plant in state space form

P :


ẋ

z∞

z2
y

 =


A B∞ B2 B

C∞ D∞ 0 D∞u
C2 0 0 D2u
C Dy∞ Dy2 0




x
w∞

w2
u

 (1)

where x ∈Rnx is the state, u∈Rnu the control, y∈Rny is the
measured output, w∞ → z∞ is the H∞ channel, w2 → z2 the
H2 channel. We seek an output feedback controller

K :
[

ẋK
u

]
=

[
AK BK
CK DK

][
xK
y

]
(2)

with state xK ∈RnK such that the closed-loop system (1)-(2)
satisfies the following properties:

1) Internal stability. K stabilizes P exponentially in
closed-loop.

2) Fixed H∞ performance. The H∞ channel has a pre-
specified performance level ‖Tw∞→z∞

(K)‖∞ ≤ γ .
3) Optimal H2 performance. The H2 performance

‖Tw2→z2(K)‖2 is minimized among all K satisfying 1.
and 2.

We will solve the H2/H∞ synthesis problem by way of the
following mathematical program

minimize f (K) := ‖Tw2→z2(K)‖2
2

subject to g(K) := ‖Tw∞→z∞
(K)‖2

∞ ≤ γ2 (3)

where Tw2→z2(K,s) denotes the transfer function of the H2
closed-loop performance channel, while Tw∞→z∞

(K,s) stands
for the H∞ robustness channel.

Notice that f (K) is a smooth function, whereas g(K) is
not, being an infinite maximum of maximum eigenvalue
functions. The unknown K is in the space R(nK+nu)×(nK+ny),
so the dimension n = (nK + nu)(nK + ny) of (3) is usually
small, which is particularly attractive when small or medium
size controllers for large systems are sought.

For brevity, we set T2 := Tw2→z2 and T∞ := Tw∞→z∞
in (1).

The performance measures H2 and H∞ are defined as:

f (K) =
1

2π

∫ +∞

−∞

Tr
[
T2(K, jω)HT2(K, jω)

]
dω

g(K) = max
ω∈[0,∞]

g(K,ω) = max
ω∈[0,∞]

λ1
(
T∞(K, jω)HT∞(K, jω)

)
where the transfer matrices T2 and T∞ are stable and
T2 has to be strictly proper to ensure finiteness of
the H2 norm. For later use we define the set Bm =
{Y ∈ Sm : Y � 0,Tr(Y ) = 1} and the spectraplex Bq

m ={
(Y1, . . . ,Yq) : Yi ∈ Sm,Yi � 0,

q
∑

i=1
Tr(Yi) = 1

}
where Sm de-

notes the space of m×m Hermitian matrices.



III. NONSMOOTH OPTIMIZATION METHOD

In this section, we present our main result, a nonsmooth
optimization method for the mixed program (3).

A. Local model and optimality conditions

Following an idea in [14], we address the mixed program
(3) by introducing the progress function: for (K, K̃) ∈ Rn,

F(K̃;K) = max
{

f (K̃)− f (K)−µ[g(K)− γ
2]+;

g(K̃)− γ2− [g(K)− γ2]+
}

where µ > 0 is fixed. Its relation with (3) is given by
Lemma 1: If K̂ ∈ Rn is a local minimizer of (3), then K̂

is a local minimizer of F(.; K̂) and 0 ∈ ∂1F(K̂; K̂).
Here ∂1F(K̃,K) stands short for ∂F(·,K)(K̃). Conversely we
have the following:

Lemma 2: If 0 ∈ ∂1F(K̂; K̂), then we have two possibili-
ties:

i. Either g(K̂) > γ2, then K̂ is a critical point of g alone,
called a critical point of constraint violation.

ii. Or g(K̂)≤ γ2, then K̂ satisfies the Fritz John necessary
optimality conditions for (3). In addition, when g(K̂) <
γ2 or 0 6∈ ∂g(K̂), then K̂ is even a KKT point of (3).

These two lemmas explain why we should search for
points K̂ satisfying 0 ∈ ∂1F(K̂; K̂). It also indicates that
minimizing the progress function F leads to a phase I-
phase II algorithm. Namely, as long as the iterates remain
infeasible, the dominant term in F is on the right, and
minimizing F reduces constraint violation. When phase I
terminates successfully, iterates become and stay feasible.
Phase II begins and the objective f is minimized. Notice
that failure of phase I may occur when iterates accumulate
in the neighborhood of a local minimizer of the constraint g
(see statement i. in lemma 2).

B. Optimality function and tangent program

We introduce the set Ω(K) = {ω ∈ [0,∞] : g(K) = g(K,ω)}
of active frequencies, or peaks. It can be shown [8] that
Ω(K) is either finite, or coincides with [0,∞]. Since the latter
never occurs in practice, we consider the finite case from
now on. Consider a finite extension Ωe(K) of Ω(K), which
is built in such a way that it depends continuously on K (see
[3] for more details). Procedures based on thresholding and
discretization as in [3] guarantee this property. Using Ωe(K)
and a fixed parameter δ > 0, we build a first order estimation
of the progress function F :

F̃(K +H;K) = max

 f ′(K)H −µ[g(K)− γ
2]+; max

ω∈Ωe(K)

max
Yω � 0,

Tr(Yω ) = 1

g(K,ω)− γ
2− [g(K)− γ

2]+ + 〈ΦYω
,H〉


where ΦYω

stands for the subgradients of g(K,ω) as obtained
in [3]. Now for some fixed δ > 0, we introduce the optimality

function:

θe(K) = min
H∈Rn

F̃(K +H;K)+ 1
2 δ‖H‖2.

The concept of optimality functions was introduced by E.
Polak [14] for finite and infinite families of smooth functions.
Its interest stems from the fact that for any stabilizing
K, θe(K) ≤ 0, and that θe(K) = 0 implies that K satisfies
0 ∈ ∂1F(K;K). As we know from Lemma 2, in all cases of
practical interest, this implies that K is a critical point of (3).

Proposition 1 (Dual form of θe):

θe(K) =− min
τ0,τω ≥ 0

τ0 + ∑
ω∈Ωe(K)

τω = 1

min
Yω � 0,

Tr(Yω ) = 1

{
τ0µ[g(K)− γ

2]+

+ ∑
ω∈Ωe(K)

τω

(
[g(K)− γ

2]+− [g(K,ω)− γ
2]

)
+

1
2δ

‖τ0 f ′(K)+ ∑
ω∈Ωe(K)

τω ΦYω
‖2

}
(4)

The solution H(K) attaining θe(K) = F̃(K + H(K);K) +
1
2 δ‖H(K)‖2 is given by:

H(K) = − 1
δ

[
τ0 f ′(K)+ ∑

ω∈Ωe(K)
τω ΦYω

]
(5)

where τ0, (τω)ω∈Ωe(K), (Yω)ω∈Ωe(K) are solution to (4).
Proof: Let Σ0

e(K) be the set of τ ∈ [0,1]card Ωe(K)+1

such that τ0 + ∑
ω∈Ωe(K)

τω = 1. Expanding the supremum F̃

and replacing the first outer and first inner maxima by a
maximum over the convex hull with τ ∈ Σ0

e(K) as convex
coordinates, the optimality function θe could be rewritten as

θe(K) = min
H∈Rn

max
τ∈Σ0

e(K)
max
Yω∈B

{
τ0 f ′(K).H − τ0µ[g(K)− γ

2]+

+ ∑
ω∈Ωe(K)

τω

[
g(K,ω)− γ

2− [g(K)− γ
2]+ + 〈ΦYω

,H〉
]

+ 1
2 δ‖H‖2

}
We now use Fenchel duality to swap the outer minimum and
the inner double maximum (see for example [14, corollary
5.5.6]) to obtain the following dual expression:

θe(K) = max
τ∈Σe(K)

max
Yω∈B

{
−τ0µ[g(K)− γ

2]+

+ ∑
ω∈Ωe(K)

τω

[
g(K,ω)− γ

2− [g(K)− γ
2]+

]
+ min

H∈Rn

[
τ0 f ′(K).H + ∑

ω∈Ωe(K)
τω〈ΦYω

,H〉+ 1
2 δ‖H‖2

]}
The inner minimum is now unconstrained and attained at
H(K) given by (5). Substituting (5) back into θe(K) yields
the expected dual program (4).

Useful properties of the optimality function exploited in
algorithmic constructions are as follows:

Proposition 2: For all stabilizing K ∈ R(nK+nu)×(nK+ny),
i. θe(K)≤ 0.



ii. d1F(K;K;H(K))≤ θe(K)− 1
2 δ‖H(K)‖2 ≤ θe(K).

iii. g(K,ω)− γ2− [g(K)− γ2]+ + 〈ΦYω
,H(K)〉

≤ θe(K)− 1
2 δ‖H(K)‖2 ≤ θe(K)

for all ω ∈ Ωe(K), Yω � 0,Tr(Yω) = 1.

iv. −µ[g(K)− γ2]+ + f ′(K).H(K)≤ θe(K)− 1
2

δ‖H(K)‖2

≤ θe(K).
v. Computing θe(K) via its dual (4) is equivalent to a SDP,

and reduces to a convex QP when max singular values
are simple over Ωe(K) [1].

We now infer from the dual formula (4) that equality
θe(K) = 0 can only occur when

τ0[g(K)− γ
2]+ = 0

∀ω ∈ Ωe(K)\Ω(K),τω = 0
∀ω ∈ Ω(K),τω

(
[g(K)− γ

2]+− [g(K)− γ
2]

)
= 0

τ0 f ′(K)+ ∑
ω∈Ω(K)

τω ΦYω
= 0

Under these conditions, we distinguish three alternatives:
• If g(K) < γ2, then τω = 0 for all ω ∈ Ωe(K) and the

condition θe(K) = 0 is equivalent to:

f ′(K) = 0

which means K is a critical point of f .
• If g(K) > γ2, then τ0 = 0 and the condition θe(K) = 0

is equivalent to:

∑
ω∈Ω(K)

τω ΦYω
= 0

which means: 0 ∈ ∂g(K); K is a critical point of g.
• If g(K) = γ2, the condition θe(K) = 0 is equivalent to:

τ0 f ′(K)+ ∑
ω∈Ω(K)

τω ΦYω
= 0

which means K is a F. John critical point.
In conclusion, we obtain the following result:

Theorem 1: A stabilizing controller K ∈R(nK+nu)×(nK+ny)

is a Fritz John critical point of the mixed H2/H∞ program (3)
if and only if θe(K) = 0 and g(K)≤ γ2. Whenever θe(K) <
0, the direction H(K) defined by (5) is a qualified descent
direction of F(.;K) at K.

Theorem 1 follows from statement ii. in proposition 2.
Moreover, assertions iii. and iv. allow us to say that

• if g(K) < γ2, H(K) is a descent direction of f at K.
• if g(K) > γ2, H(K) is a descent direction of g at K.
• if g(K) = γ2, H(K) is a descent direction of both f and

g at K.
These observations lead us to develop a nonsmooth descent
algorithm for solving the mixed program (3).

IV. NONSMOOTH DESCENT ALGORITHM

In this section, we first propose a nonsmooth algorithm
for the synthesis of locally optimal controllers for the mixed
H2/H∞ program and then establish its global convergence.

The algorithm below is a first order descent method
applied step by step to the progress function F . The principle
is as follows: at each iteration of our algorithm, we compute a
descent direction of the progress function H 7→F(K j +H;K j)
around the current iterate K j. According to theorem 1, we
therefore solve the tangent program:

min
H∈Rn

F̃(K j +H;K j)+ δ

2 ‖H‖2. (6)

whose solution H(K j) is (5) and is a qualified descent
direction for F(·;K j) at K j. Performing a backtracking line
search, we compute a step s such that K j + sH(K j) remains
stabilizing and satisfies:

F (K j + sH(K j);K j)≤ sαθ(K j) (7)

where α ∈ (0,1) is the minimum fraction required of the
directional derivative along H j at K j. The algorithm stops as
soon as the optimality condition 0 ∈ ∂1F(K j;K j) is satisfied.

Algorithm 1 Nonsmooth algorithm for H2/H∞ synthesis
Require: γ the performance level, nK the controller order,

µ > 0, δ > 0 and α ∈ (0,0.25].
1: Initialization. Find initial closed loop stabilizing con-

troller K0. Put main loop counter to j = 0.
2: while K j does not satisfy the optimality condition do
3: Frequency generation. Construct finite extension

Ωe(K j) of the set of active frequencies Ω(K j) at K j.
4: Tangent program. Solve tangent program:

min
H∈Rn

F̃(K j +H;K j)+ δ

2 ‖H‖2.

Solution is H j = H(K j). Compute θ j = θe(K j).
5: Line search. Backtrack to compute a step s such that:

F(K j + sH j;K j)≤ sαθ j

and K j + sH j remains stabilizing.
6: Update. K j+1 := K j + sH j; j := j +1.
7: end while

We now prove global convergence of algorithm 1 in the
sense that every accumulation point of a sequence of iterates
generated by the algorithm is a critical point of the mixed
H2/H∞ program. Consider:
(H1) The set {K ∈ Rn : γ2

∞ ≤ g(K)≤ g(K0)} is bounded.
(H2) f is weakly coercive on the level set {K ∈Rn : g(K)≤

γ2
∞} in the following sense: if K j is a sequence of

feasible iterates with limsup j→∞ ‖K j‖= ∞, then f (K j)
is not monotonically decreasing.

Under these assumptions, any sequence of steps generated
by our algorithm is bounded (see [6] for details) and we are
now ready to show the convergence of our algorithm:

Theorem 2: Assume (H1), (H2) at K0, and let K j the
sequence generated by algorithm 1. Then every accumulation
point K̂ of K j is either a F. John critical point of the mixed
H2/H∞ problem, or a critical point of the constraint violation.

Proof: We have to show that 0 ∈ ∂1F(K̂; K̂). There are
two cases to be discussed. Either K j are feasible from some



index onwards, or K j remain unfeasible all the time. Let
us discuss the first case. Assume contrary to the statement
that θe(K̂) < 0. Then H(K̂) gives qualified descent at K̂
in the sense that F(K̂ + tH(K̂); K̂) ≤ αtθe(K̂) for all 0 <
t ≤ t(K̂), where t(K̂) is the largest step such that every
t ∈ (0, t(K̂)] satisfies the Armijo condition. Now observe that
a practical backtracking line search does not compute t(K),
but some t](K)∈ (0, t(K)]. For instance Polak [14] advocates
t](K) = max{β ν : ν ∈ N,F(K + β ν H(K);K) ≤ αβ ν θe(K)}
with some fixed 0 < β < 1. Then K j+1 = K j + t](K j)H(K j).

Now recall that the Ωe(K) depend continuously on K,
hence θe(K) and H(K) also depend continuously on K.
Suppose t](K j)→ t], then t] ∈ {β t](K̂), t](K̂)} and t] ≤ t(K̂).
Since K j → K̂ for a subsequence, we have t](K j)H(K j) →
t]H(K̂), hence F(K j + t](K j)H(K j);K j) ≤ 1

2 αt]θe(K̂) ≤
1
2 αβ t](K̂)θe(K̂) ≤ 1

2 αβ 2t(K̂)θe(K̂) < 0 for j ≥ j0. This
contradicts the fact that F(K j+1;K j)→ 0 and settles the first
case. The proof of the second case is similar.

V. SOME PRACTICAL ASPECTS

Algorithm 1 has been implemented for both structured and
unstructured H2/H∞ synthesis. In practice it is often required
that some controller gains be put to zero, while others can
be freely assigned. This is e.g. the case when the controller
has to be strictly proper to ensure finiteness of the H2 norm.

A. Stopping criteria

Since our algorithm is a first order method, it may be slow
in the neighborhood of a local solution of (3). As in [3], we
have therefore implemented termination criteria which ensure
that unnecessary iteration with marginal progress near the
local optimum can be avoided.

Our first stopping test is based on 0 ∈ ∂1F(K;K) and
checks whether the algorithm has reached a critical point
of (3) by computing

inf{||Φ||;Φ ∈ ∂1F(K;K)}< ε1.

We also define two additional tests that compare the relative
progress of the local model around the current iterate and
the step length to the controller gains:

|F(K+;K)| ≤ ε2 ||K+−K|| ≤ ε3(1+ ||K||).

For stopping, either the first or the last two tests are required.

B. Performance level

For all test examples, we compute the locally optimal
H2 controller K∗

2 for channel T2, the locally optimal H∞

controllers K∗
∞ for channel T∞ and then: γ2 := ||T∞(K∗

2 )||∞
and γ∗∞ = ‖T∞(K∗

∞)‖∞. It is now trivial (see e.g. [7]) that the
performance level γ in (3) has to satisfy

γ
∗
∞ ≤ γ < γ2. (8)

Indeed the H2/H∞ problem is infeasible for γ < γ∗∞, while for
γ ≥ γ2, the optimal H2 controller K∗

2 is also optimal for (3).
Disregarding complications due to (multiple) local min-

ima, it would make sense in a specific case study, to consider
the entire one parameter family K(γ) of solutions of (3)

Fig. 1. H2/H∞ optimal static controllers K(γ) = (K1(γ),K2(γ)) ∈ R2 for
the vehicular suspension control problem (see VI-B); γ ∈ [γ∗∞,γ2] 7→ K(γ)
continuously transforms the H∞ optimal gain K∗

∞ into the H2 optimal gain K∗
2

as a function of the gain value γ in the range (8), as this
transforms K∗

∞ continuously into K∗
2 (see Fig. 1).

In our tests we only compute K(γ) for a fixed value γ in
order to compare our method to existing approaches.

VI. NUMERICAL TESTS

In this section we present numerical tests of algorithm 1
on a variety of H2/H∞ synthesis problems. In all tests, we
use the techniques in [8] to compute an initial stabilizing K0,
which is not necessarily feasible for (3). This allows to test
phase I of the method. In some cases K∞ might be chosen
as a feasible initial iterate, so that phase I can be avoided.
We choose γ ∈ [γ∗∞,γ2), see Tab. I.

Problem (nx,ny,nu) nK α∗
2 / γ2 γ∗∞

Academic ex [7] (2,1,1) 0 6
1
4 /

3√
5

1

Academic ex (3,1,1) 3 7.748 / 23.586 9.5237
[18]

Vehicular [19] (4,2,1) 0 32.416 / 6.3287 4.8602
suspension pb 2 32.299 / 6.1828 4.8573

4 32.267 / 6.3260 4.6797
From COMPleib

’BDT2’ (82,4,4) 0 0.79389 / 1.3167 0.67421
10 0.78877 / 1.1386 0.72423
41 0.77867 / 1.1302 0.77405

’HF1’ (130,1,2) 0 5.8193e-2 / 0.4611 0.44721
10 5.8198e-2 / 0.4600 0.44721
25 5.8174e-2 / 0.4605 0.44721

’CM4’ (240,1,2) 0 9.2645e-1 / 1.6546 0.81650
50 9.3844e-1 / 4.2541 0.81746

TABLE I
RESULTS OF NON-CONSTRAINED H2 AND H∞ SYNTHESIS WHERE

α∗
2 = ||T2(K∗

2 )||2 , γ2 = ‖T∞(K∗
2 )‖∞ AND γ∗∞ = ||T∞(K∗

∞)||∞ .

Next, the parameter δ is arbitrary choosen to 0.1. Inspired
from trust region techniques [6], a way to improve the
approximation of the progress function F(·;K) by the model
F̃(·;K)+ δ

2 ‖·−K‖2, would be to evaluate the progress of the
descent algorithm at each iteration and then to readjust δ .



A. Two academic examples
We start with two academic examples whose models

are given in [7] and [18, example 1]. The first one is
simple enough to allow explicit computation of static output
feedback controllers for H2, H∞ and H2/H∞ synthesis.

For the purpose of testing, we first apply our algorithm
for a performance level γ > γ2 = ‖T∞(K∗

2 )‖∞, so that it finds
the optimal H2 controller K∗

2 . See Table I.

Problem Academic ex. [7]
(nx,ny,nu) (2,1,1)

µ 10
nK 0 0 1
γ 2 1.2 1.2

Iter 10 11 21
H2 norm 1.5651 1.5735 1.5394
H∞ norm 1.3416 1.2 1.2
Final K [ −0.8165 ] [ −0.9458 ] K f1

(LMI) H2 norm - 1.5778 -
(Th.) H2 norm - 1.5735 -

Problem Academic ex. [18]
(nx,ny,nu) (3,1,1)

µ 1
nK 3
γ 23.6 12

Iter 83 150
H2 norm 7.7484 10.4552
H∞ norm 23.5675 12.0000
Final K K f2 K f3

(LMI) H2 norm 8.07 -
(Th.) H2 norm 7.748 -

TABLE II
MIXED H2/H∞ SYNTHESIS FOR TWO ACADEMIC EXAMPLES

K f1 =
[

−1.4286 −0.8013
0.8194 −0.5003

]

K f2 =

 −2.5016 2.4625 −0.4895 −1.6314
−1.9540 −1.1773 0.8868 1.9661

0.1410 −2.9072 −4.0565 0.9222
2.7108 −0.6513 0.0935 0


K f3 =

 −3.6188 −2.3240 2.0119 −1.3994
3.4490 −2.8053 1.0488 2.1526
0.7189 1.8672 −3.7921 −3.0990
2.0573 −3.5362 0.3347 0



We then perform the H2/H∞ synthesis on the two con-
sidered examples (see Table II). We not only improve the
results computed by LMI approaches in [7] and [18], but
also obtain the theoretical values of the H2 and H∞ norms.

B. Vehicular suspension controller design
The model of the vehicular suspension is described in [9]

and [19]. We first focus on static H2/H∞-synthesis. The H∞

performance level in (3) is chosen as γ = 5.225 and the
optimal solution we obtain is

K∗ =
[

4.1586 0.2393
]

The H2 norm computed by our algorithm is ||T2(K∗)||2 =
34.446 instead of 35.8065 obtained by [19] and the related
H∞ performance is ||T∞(K∗)||∞ = 5.2250 instead of 5.0506 in
[19]. This highlights the conservatism of the LMI approach
in [19]. In contrast our algorithm attains the H∞ performance
constraint, as it should. Results are given in Table III.

We also present numerical results of the H2/H∞ synthesis
for dynamic order controllers of orders nK = 2,4.

Problem Vehicular suspension controller design [19]
(nx,ny,nu) (4,2,1)

nK 0 2 4
µ 102 102 102

γ 5.225 5.225 5.225
Iter 264 300 (max.) 157

H2 norm 34.446 33.318 33.313
H∞ norm 5.2250 5.2232 5.5953

K f inal [ 41599 2393] K f1 K f2

TABLE III
MIXED H2/H∞ SYNTHESIS FOR THE VEHICULAR SUSPENSION PROBLEM

K f1 =

 0.0407 0.0228 0.5902 0.0211
−0.5602 −0.1051 −0.0227 −0.0784

0.1779 −0.5606 0.0880 1.7435

e+03

K f2 =


−1.967 −0.149 0.633 −0.196 0.065 −3.959
−0.295 −0.153 0.094 0.038 0.003 0.835

0.341 0.090 −0.118 0.030 −0.009 0.433
0.140 −0.078 −0.031 −0.118 −0.011 0.697

−3.943 0.938 0.646 0.461 0.094 12.282

e+02

C. COMPleib examples

Models in this section are from the COMPleib collection
[13]: distillation tower ’BDT2’, heat flow in a thin rod ’HF1’
and cable mass model ’CM4’. These problems are originally
H∞ synthesis problems. As proposed by F. Leibfritz in [12],
we have added a H2 channel by setting B2 = B∞ and Dy2 = 0.

In each example, the H∞ performance constraint is first
chosen as γ > γ2 to obtain an upper bound of the optimal
H2 performance and an approximation of the related H∞

performance γ2. Our results are presented in Tab. IV and V.

Problem
(nx,ny,nu) nK γ Iter H2 norm H∞ norm

’BDT2’ 0 10 192 8.0510e-01 9.5010e-01
(82,4,4) 10 10 543 7.6480e-01 1.1438

0 0.8 115 8.1892e-01 7.9994e-01
10 0.8 300 7.7021e-01 7.9976e-01
41 0.8 300 8.4477e-01 7.9998e-01

’HF1’ 0 10 7 5.8193e-02 4.6087e-01
(130,1,2) 0 0.45 13 5.8808e-02 4.4972e-01

25 0.45 25 5.8700e-02 4.4993e-01
’CM4’ 0 10 5 9.2645e-01 1.6555

(240,1,2) 0 1 19 9.8436e-01 1
50 1 49 9.4216e-01 9.9977e-01

TABLE IV
MIXED H2/H∞ SYNTHESIS FOR TEST EXAMPLES FROM COMPLeib

As an illustration, Figs. 2 and 3 show the evolution of the
H2 and H∞ norms for ’BDT2’ example during first iterations.
In Fig. 2, phases I and II clearly appear: while the current
iterate is unfeasible, descent steps to minimize constraint
violation are generated. When the H∞ constraint is met, the
technique privileges minimization of the H2 objective. Fig. 3
shows the evolution of the max singular value associated with
the H∞ constraint in the first 5 iterations. Stars indicate fre-
quencies selected to build the extension Ωe(K). We observe
that max singular values are simple at selected frequencies
which seems valid as a rule in most applications.



Problem γ K f inal

’BDT2’ 10

 −0.7629 −0.6087 12.1193 1.5088
−0.4776 −1.4756 7.1627 27.1322
−0.5665 0.0612 10.5079 7.5538
−1.0256 −0.4369 19.6955 32.3475


.8

 0.8398 −3.8674 −6.7992 −6.9955
−1.8563 4.8118 17.4900 12.8540

0.4544 −1.4443 1.4876 −1.3709
−1.3602 4.0823 19.4811 10.0646


’HF1’ 10 [ −0.1002 −1.1230 ]

.45 [ −0.2399 −1.1334 ]
’CM4’ 10 [ −0.5448 −1.3322 ]

1 [ −0.5219 −0.8070 ]

TABLE V
STATIC H2/H∞ OUTPUT FEEDBACK CONTROLLERS FOR EXAMPLES

EXTRACTED FROM COMPLeib

Fig. 2. ’BDT2’ example - H2 norm during the first 20 iterations

VII. CONCLUSION

Mixed H2/H∞ is a practically important problem for which
successful numerical methods are lacking. In response we
have proposed an algorithm based on nonsmooth optimiza-
tion, which improves systematically over numerical results
from the literature, and in particular, over conservative results
obtained by LMI techniques. Our approach seems promising
since it is capable to handle large size problems with up
to 240 states. Extensions to problems involving a mixture
of time- and frequency-domain constraints as well as to
nonlinear systems are currently under investigation.
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