
Tuning Controllers Against Multiple Design Requirements

Pierre Apkarian

Abstract— In this paper, we introduce a new technique
for tuning arbitrarily structured controllers against multiple
control requirements. Control requirements encompass soft or
hard design constraints in the usual H2 and H∞ design metrics
as well as supplemental requirements such as
• µ constraints on MIMO margins at specified opening sites,
• constraints on the closed-loop dynamics,
• loop-shaping constraints at specified loop opening sites,
• controller stability enforcement.

Our algorithmic approach is a non-smooth technique relying on
a one-parameter driving function which leads to locally optimal
solutions of the design problem. This has been implemented
in the MATLAB-based tool SYSTUNE which can be regarded
as an extension of HINFSTRUCT from the Robust Control
Toolbox [19]. The new SYSTUNE retains the same flexibility
and simplicity as HINFSTRUCT to specify control structures
but is tailored to handle multiple models and requirements.

Two challenging applications are discussed to illustrate the
capabilities of the new technique.

I. INTRODUCTION

Control engineers have to face with a vast array of design
requirements. Requirements might involve gain attenuation
in prescribed frequency intervals, settling time constraints,
robustness to variations in model physical parameters to
cite a few. Both the number and differences in nature of
these requirements pose a major impediment to control
tuning. Moreover, real-world problems dictate using simple
controllers such as PIDs, structured or limited-complexity
controllers to ease implementation, validation and possibly
on-site re-tuning. Ignoring implementation constraints, a
sound approach to handle multiple requirements is certainly
the LMI methods developed in [1]–[3]. These techniques
however often yield unduly complex controllers and post-
processing is mandatory to obtain viable solutions. Note the
post-processing stage may include order reduction, truncation
of fast dynamics, data re-scaling and remains challenging on
its own.

This paper discusses a new approach to controller tun-
ing against multiple possibly conflicting requirements. The
general cast is shown in Fig. 1. Given a plant P (s) with
Input/Output (I/O) design requirements (wi, zi), control in-
puts u and measured outputs y, a fixed-structured controller
C(s, p) is sought to meet a set of constraints:

‖Tw1→z1(C(s, p))‖ ≤ 1, . . . , ‖TwN→zN (C(s, p))‖ ≤ 1 .
(1)

The notation Tw→z is used to represent the closed-loop
map from signal w to signal z. The symbol ‖ ‖ refers to either
the H∞ or to the H2 norms possibly restricted to prescribed

Pierre Apkarian is with ONERA, 2 Av. Ed. Belin, 31055, Toulouse,
France Pierre.Apkarian@onera.fr

frequency intervals. It is worth noticing constraints stand
individually and are not aggregated into a single objective
as is the case in classical H∞ or H2 syntheses. The con-
troller C(s, p) is assumed decentralized and built from lower
granularity structured blocks Ci(s, p), a setting which covers
most practical situations. The parameter p ∈ Rn regroups all
tunable parameters in the controller, i.e., PID gains, filter
coefficients, etc. Further details on built-in and customized
controller structures are given in [4].

Problem (1) is merely a feasibility problem. A more
challenging cast is when both soft objectives and hard
constraints are present. This is then formalized as

minimize
p

max
i=1,...,no

{‖Twi→zi(C(s, p))‖}
subject to ‖Twj→zj (C(s, p))‖ ≤ 1, j = 1, . . . , nc .

(2)

Program (2) emphasizes the fact that constraints
‖Twj→zj (C(s, p))‖ ≤ 1, j = 1, . . . , nc have higher priority
and parameters p outside the constraint set should be dis-
carded. The proposed resolution technique should then try
its best to minimize the max-function objective subject to
constraint feasibility.

We also add to the cast in (2), design requirements that
do not express in terms of simple norm constraints. This
includes
• internal stability in closed-loop,
• constraints on the closed-loop dynamics,
• SISO or MIMO margins based on µ at specified loop

opening sites,
• loop-shaping constraints at specified loop opening sites,
• stability constraints on the controller dynamics.
Note while margin constraints, open-loop shaping or en-

forcing controller stability remain intractable in the LMI
setting, they do not necessitate a special treatment with the
non-smooth approach. Also, the framework discussed so far
is easily extended to problems where the generalized plant
P (s) originates from multiple model instances. This is the
case when a single controller is sought for a family of
operating conditions, or when deviations of some physical
coefficients from their nominal values must be accounted
for. See Fig. 2. Again the cast in (2) possibly enriched with
supplemental constraints is the appropriate formalization of
such problems.

Solving such problems cannot be addressed with con-
ventional techniques and computing global solutions is be-
yond reach. We therefore suggest a specialized non-smooth
technique which computes local solutions and is provably
convergent to do so. A longstanding experience with an
earlier version for unconstrained programs seems to indicate

this technique perform well in practice, both in terms of
speed of execution and quality of the solutions [5].

In this paper, we briefly introduce an extension of [4],
[6] to problems involving multiple soft and hard design
requirements. Our algorithmic approach relies on a max-type
one-parameter driving function whose local minima are KKT
points of problem (2) for suitable values of the parameter.
This approach was originally proposed in [7] for a single
hard constraint in the special case of distance to instability.

N

...

1
C (s,p)

u
P(s)

. .
.

0

0

y

C (s,p)

z
z w

w
2

1

2

1

...

p: tunable parameters

X

site

C (s,p)

loop opening

Fig. 1. Synthesis against multiple requirements

C (s,p)
N

...

1
C (s,p)

C (s,p)
N

...

1
C (s,p)

p: tunable parameters

u

. .
.

0

0

y

C (s,p)

z
z w

w
2

1

2

1

... u

. .
.

0

0

y

C (s,p)

z
z w

w
2

1

2

1

...
 P (s)

2
P (s)

1

Fig. 2. Synthesis against multiple requirements and models

The paper is organized as follows. Section II introduces
central concepts and underlying principles of the non-smooth
technique for solving problems with multiple soft and hard
requirements. Two non-trivial control applications, reliable
flight control, section III, and formation flight guidance,
section IV, serve to illustrate the potential of this new
technology.

II. NON-SMOOTH ALGORITHM FOR MULTIPLE
REQUIREMENTS

Our approach to tuning against multiple requirements uses
non-smooth casts of the form

minimize f(x)
subject to g(x) ≤ c, c ∈ R, (3)

where both f and g are max-functions

f(x) := max
i=1,...,nf

fi(x), g(x) := max
i=1,...,ng

gj(x), (4)

and x := p ∈ Rn gathers all tunable controller parameters.

Individual branches fi and gj can express a vast array of
closed- or open-loop requirements including
• H∞-norm requirements possibly limited to specific fre-

quency bands,
• H2-norm requirements or variance constraints,
• Loop-shaping specifications at prescribed loop-opening

sites,
• Constraints on closed-loop dynamics,
• Stability constraints on controller dynamics,
• MIMO or SISO stability margins at specified loop-

opening sites.
Using shifting if necessary, we will assume throughout all

functions fi and gj take on positive values. It has been shown
in [7] that solving (3) can be based on a one-parameter family
of programs

Pµ : minimize
x

hµ(x) := max{f(x), µg(x)}, (5)

where µ is chosen so that the solution xµ to Pµ satisfies
the Karush-Kuhn-Tucker conditions for criticality of program
(3).

From a practical viewpoint, problem (3) is solved through
a sequence of problems Pµ where µ is driven by a bisection
scheme. If constraints g(x) ≤ c are not competing with f ,
minimizing f is enough and we are done. Leaving aside
this trivial case, solving problem (3) relies on decreasing or
increasing µ according to constraint feasibility or not since
ultimately we should have binding constraints g(xµ) = c.

1) Initialize lower bound µ = 0
2) Find a strictly feasible point g(xf) < c. Stop if

infeasible, otherwise go to 3.
3) Initialize upper-bound µ = f(xf)/g(xf), and set µ =

(µ+ µ)/2
4) Stop if |µ − µ| ≤ ε, otherwise solve problem Pµ for

xµ
5) If g(xµ) > c, set µ = µ otherwise set µ = µ
6) Update µ = (µ+ µ)/2, and loop over 4

Note a feasible initial point xf is easily computed based on
the program minimize

x
g(x) with early termination as soon as

g(x) ≤ c. The justification of the upper-bound initialization
is as follows. If initialized with xf strictly feasible, we have
for program Pµ

min
x

max{f(x), f(xf)
g(xf)

g(x)} < f(xf)

= µg(xf)
< µc

(6)

We infer g(xµ) < c for program Pµ. Hence µ is an upper-
bound for µ.

Substantial speed-up is obtained by initializing each new
problem Pµ by the solution of the previous subproblem.
Given any µ, the driving function hµ is also a max-function
which facilitates computation of jet information such as
Clarke gradients. By the convex hull rule, we have

∂hµ(x) =

∂f(x) if f(x) > µg(x),
µ∂g(x) if µg(x) > f(x),
{α∂f(x) + (1− α)µ∂g(x) : α ∈ [0, 1]}
if f(x) = µg(x) .

It follows that every problem Pµ can be solved by adapting
the baseline technique presented in [6] which is guaranteed
to converge to local solutions even for any remote starting
points.

Note the outlined approach must not be confused with the
progress function approach discussed at length in [8] (see
also [9] for applications to control problems) nor to barrier
or exact penalty algorithms presented in [10]. Both progress
function and barrier algorithms are feasible methods meaning
that algorithm iterates should move in the feasible set. Our
proposal is an infeasible method where iterates are allowed
to move across constraint boundary with potentially larger
descent steps and therefore better progress at each iteration.

What we have described is a local method. As such it
leads to critical points which are local minima in practice.
Using multiple restarts is therefore advisable to mitigate the
inconvenience of local optimality.

Alternative control-related local optimization techniques
and heuristics include the gradient sampling technique de-
scribed in [11], derivative-free optimization techniques dis-
cussed in [12]–[15], particle swarm optimization methods,
see [16] and references therein, and also evolutionary com-
putation techniques [17].

III. RELIABLE FLIGHT CONTROL

A typical instance where handling multiple models and
requirements makes sense is when the system experiences
large deviations from normal operation. This is the case in
flight control when failures of some control surfaces take
place due to unpredicted events.

The application discussed in this section deals with reliable
flight control of an aircraft undergoing outages in the elevator
and aileron actuators. The flight control system is required to
maintain stability and adequate performance in both nominal
operation and degraded conditions where some actuators are
no longer effective due to control surface impairment. In
addition, wind gusts must be alleviated in all conditions in-
cluding extreme outage situations to maintain aircraft safety.
The aircraft control loop is given in Fig. 3.

Fig. 3. Synthesis Interconnection

The aircraft is modeled as a classical 6th-order state-space
system with state variables given in Table I (units are m/s
for velocities and deg/s for angular rates).

The state vector is available for control as well as the
flight-path bank angle rate µ (deg/s), the angle of attack α

TABLE I
AIRCRAFT STATE DESCRIPTION

u x-body axis velocity
w z-body axis velocity
q pitch rate
v y-body axis velocity
p roll rate
r yaw rate

(deg), and the sideslip angle β (deg). Control inputs are the
deflections of the right elevator, left elevator, right aileron,
left aileron, and rudder. All deflections are in degrees.
Elevators are grouped symmetrically to generate the angle of
attack. Ailerons are grouped anti-symmetrically to generate
roll motion. This leads to 3 control actions as shown in Fig.
3.

The controller consists of state-feedback control Kx in the
inner loop and MIMO integral action Ki in the outer loop.
The matrix-valued integral gain Ki is 3× 3 while the state-
feedback gain Kx is 3× 6. Overall this represents 27 tuning
parameters.

In addition to nominal operation, we consider 8 outage
occurrences of the control surfaces. This is implemented in
the Simulink diagram through the 5 × 5 diagonal matrix at
the aircraft input. Correspondences between failure cases and
gain values are clarified in Table II.

TABLE II
OUTAGE CASES WHERE 0 STANDS FOR FAILURE

Outage cases Diagonal of Outage Gain
nominal mode 1 1 1 1 1

right elevator outage 0 1 1 1 1
left elevator outage 1 0 1 1 1
right aileron outage 1 1 0 1 1
left aileron outage 1 1 1 0 1

left elevator and right aileron outage 1 0 0 1 1
right elevator and right aileron outage 0 1 0 1 1
right elevator and left aileron outage 0 1 1 0 1
left elevator and left aileron outage 1 0 1 0 1

Control requirements are as follows:
• Good tracking performance in µ, α, and β in nominal

operating mode with adequate decoupling of the three
axes.

• Maintain performance in the presence of wind gust of
5m/s.

• Limit stability and performance degradation in the face
of actuator outage.

To express the 1st requirement, we use an LQG-like cost
function that penalizes the integrated tracking error e and the
control effort u:

J = lim
T→∞

E

(
1

T

∫ T

0

‖Wee‖2 + ‖Wuu‖2dt

)
. (7)

The diagonal weights We and Wu are the main tuning
knobs for trading responsiveness and control effort and
emphasizing some channels over others.

We use the TuningGoal.WeightedVariance re-
quirement of SYSTUNE to express this cost function, and

use a less stringent performance weight We for the outage
scenarios. We have We = diag([20 30 20]),Wu = I3 in the
nomical case and We = diag([8 12 8]);Wu = I3 for outage
conditions.

For wind gust alleviation, we limit the variance of the error
signal e due to the white noise wg driving the Dryden wind
gust model. Again we formulate a less stringent requirement
for the outage scenarios. The variance of e is limited to 0.01
in the nominal case and to 0.03 for the outage scenarios.
Also, wind alleviation for all conditions is considered a hard
constraint meaning it should be met against performance
requirement which is a soft requirement. This leads to a con-
strained non-smooth program as discussed in section II. We
have in the language of section II, f(x) := maxi=1,...,9 fi(x)
and g(x) := maxi=1,...,9 gi(x), where i refers to nominal
and outage scenarios. The fi’s are square roots of J in
(7) with appropriate weightings We and Wu. Similarly, the
gi’s are RMS values associated with the transfer functions
from white noise wg to error signal e suitably weighted to
reflect variance bounds of 0.01 and 0.03. Decision variables
x involve entries in Ki and Kx.

Given the synthesis interconnection in Fig. 3 with appro-
priately named input and output signals, tracking require-
ments for each model are specified through the following
MATLAB syntax:

% Nominal tracking requirement
We = diag([20 30 20]); Wu = eye(3);
SoftNom=TuningGoal.WeightedVariance(’setpoint’,
{’e’,’u’}, blkdiag(We,Wu), []);
SoftNom.Models = 1; % nominal model

% Tracking requirement for outage conditions
We = diag([8 12 8]); Wu = eye(3);
SoftOut=TuningGoal.WeightedVariance(’setpoint’,
{’e’,’u’}, blkdiag(We,Wu), []);
SoftOut.Models = 2:9; % outage scenarios

Note the Models field indicates which model is involved
for each requirement. Similarly, prescribing wind gust alle-
viation is done as follows:

% Nominal gust alleviation
HardNom = TuningGoal.Variance(’wg’,’e’,0.01);
HardNom.Models = 1;

% Gust alleviation for outage conditions
HardOut = TuningGoal.Variance(’wg’,’e’,0.03);
HardOut.Models = 2:9;

Next we use the slTunable interface to acquire a
closed-loop model for each of the nine flight conditions:

for k = 9:-1:1
outage = OutageCases(k,:) ;
ST = slTunable(’reliableAircraft’,{’Ki’,’Kx’}) ;
T0(:,:,k) = ST.getIOTransfer({’setpoint’;’wg’},
{’e’;’u’}) ;

end

The resulting generalized state-space array T0 contains
nine tunable models parameterized by the gains Ki and Kx.
We set the wind gust velocity to 5m/s and initialize tunable
gains

GustSpeed = 5;
Ki = eye(3);
Kx = zeros(3,6);

Controllers are then computed using the non-smooth tech-
nique implemented in SYSTUNE .

[T,fSoft,gHard] = systune(T0,[SoftNom;SoftOut], ...
[HardNom;HardOut]);

The object T is the tuned version of T0 from which tuned
valued of Ki and Kx can be retrieved using

Ki = getBlockValue(T, ’Ki’); Ki = Ki.d;
Kx = getBlockValue(T, ’Kx’); Kx = Kx.d;

For comparison purpose, we have computed a controller
for the nominal case alone thus disregarding outage scenar-
ios.

[T,fSoft,gHard] = systune(T0(:,:,1),SoftNom, ...
HardNom);

Using the simulator in Fig. 3, responses to setpoint com-
mands in µ, α and β with a gust speed of 5m/s are
shown in Fig. 4 for the nominal controller and in Fig. 5 for
the reliable controller. As expected, nominal responses are
good but they strongly deteriorate when faced with outage
cases. The reliable controller maintains better performance
in outage operating modes. The optimal performance (square
root of LQG cost J in (7)) for the reliable design is only
slightly worse than for the nominal tuning (26 vs. 23). For
nine 6 × 4 models of order 11, this required 30.4 seconds
cpu time on Mac OS X with 2.66 GHz Intel Core i7 and 8
Go Memory.

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

Flight−path bank angle rate (deg/s)

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

Angle of attack (deg)

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

Sideslip angle (deg)

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

Flight−path bank angle rate (deg/s)

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

Angle of attack (deg)

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

Sideslip angle (deg)

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

Flight−path bank angle rate (deg/s)

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

Angle of attack (deg)

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

Sideslip angle (deg)

Fig. 4. Time responses with nominal controller with µ, α and β setpoints
with wind gust (left to right).

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

Flight−path bank angle rate (deg/s)

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

Angle of attack (deg)

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

Sideslip angle (deg)

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

Flight−path bank angle rate (deg/s)

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

Angle of attack (deg)

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

Sideslip angle (deg)

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

Flight−path bank angle rate (deg/s)

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

Angle of attack (deg)

0 1 2 3 4 5 6 7 8 9 10

−1

0

1

Sideslip angle (deg)

Fig. 5. Time responses with reliable controller with µ, α and β setpoints
with wind gust (left to right).

IV. GUIDANCE OF A UAV FORMATION

This example deals with the guidance of a leader-follower
formation of 3 UAVs. The leader is UAV 1 and the followers
are UAVs 2 and 3. The objective is to maintain prescribed
velocities for all UAVs and prescribed distances along the x
and y axes between UAVs 1 and 2, and UAVs 2 and 3. Each
UAV has only access to partial information which leads to
a decentralized control problem. We refer the reader to [18]
for more details on this application.

We consider the motion of the formation in the horizontal
(x, y) plane. The state of each UAV is described by:

• Leader (UAV 1): Two-entry vector δv1 of speed errors
of leader in x and y directions

• Followers (UAV 2 and UAV 3): Two-entry vectors
δd2, δd3 of errors in x,y distances with predecessor and
two-entry vectors δv2, δv3 of speed errors.

Each UAV is controlled by a two-entry thrust vector
δui, i = 1, 2, 3 (thrusts in x and y directions). The linearized
dynamics for the entire formation are:

Ẋ = AX +BU,

where X is the overall state vector obtained by stacking
δv1, δd2, δv2, δd3, δv3 and U is the overall thrust vector
obtained by stacking δu1, δu2, δu3. Units are ft, ft/s, and
ft/s2.

The leader sets the target velocity for the entire formation
and only worries about achieving this target velocity. Mean-
while, the followers must control both their velocity and their
distance to their predecessor. Each follower only knows its
own speed and its position relative to its predecessor, which
leads to the decentralized control law:

δu1 = K1δv1, δu2 = K2

(
δd2
δv2

)
, δu3 = K2

(
δd3
δv3

)
,

where K1 is a 2× 2 gain matrix and K2 is a 2× 4 gain
matrix. Note that we use the same gain K2 for both followers
since they are interchangeable UAVs. Overall, this amounts
to state-feedback control with the block-diagonal structure:

U = KX =

 K1 0 0
0 K2 0
0 0 K2

X.

The closed-loop system is shown in Fig. 6.

Fig. 6. Closed-loop system

The input vector W is a white noise process which models
speed and velocity disturbances. The feedback gains K1,K2

must be tuned to ensure:
• Stability of the formation flight
• Appropriate decay of the distances and velocities to

their desired values. The reference is zero here since
we are working with error dynamics.

• Reasonable thrust levels
• Adequate MIMO gain and phase margins at the plant

inputs.
Again we use a quadratic LQG cost of the form

J = lim
T→∞

E

(
1

T

∫ T

0

(XTQX + UTRU)dt

)
to capture the first three requirements. The value J2 is just

the variance of the weighted output signal

Z =

(
Q1/2X
R1/2U

)
,

for a unit-variance white noise input W (see Fig. 6). We set
Q = I10 and R = I6 for the initial tuning.

For the last requirement, we specify a minimum of 10 dB
and 45 degrees of simultaneous gain and phase margins at
the plant inputs. This is formulated as a hard requirement
meaning that controllers that do not meet these constraints
are discarded by the algorithm. Note such margins are
truly MIMO and correspond to simultaneous gain and phase
distortions at the plant inputs. Internally, the requirement
of 10 dB and 45 degrees is normalized by SYSTUNE and
formulated as a disk constraint [20]:

ρ‖D(s)(I − (I + L)−1L)D(s)−1‖∞ ≤ 1, (8)

with the definition L := KP22 and ρ = max(ρg, ρp) with

ρg = max
(∣∣∣ 1010/20−11010/20+1

∣∣∣ , ∣∣∣ 10−10/20−1
10−10/20+1

∣∣∣) ,
ρp = tan(45 ∗ 180/2π) ,

and D(s) is a 6×6 diagonal static D-scale consistent with
the diagonal uncertainty structure. Optionally, one could use
dynamic D-scales but static ones turned out sufficient in this
case.

Summing up, our formulation includes an H2-norm objec-
tive in combination with a µ upper-bound hard constraint.
Invoking SYSTUNE as described in section III yields the
following feedback components:

K1 =

[
−2.124 7.45e−08
−4.39e−07 −2.124

]
,

K2 =

[
1.126 3.89e−06 −2.001 −3.78e−06
5.18e−08 1.126 −1.12e−06 −2.001

]
Simulations of the UAV formation to initial errors of 100

ft/s in x-speed, 150 ft/s in y-speed, 400 ft in x-distance,
and 300 ft in y-distance are displayed in Figs. 7 and 8.

Finally, we check in Fig. 9 phase and gain margins at the
plant inputs formulated as the disk constraint in (8). Note
the 0 dB boundary materializes 10 dB and 45 degrees gain
and phase margins.

0 2 4 6 8 10 12
−150

−100

−50

0
Speed errors for UAV 1

X

Y

0 2 4 6 8 10 12
−200

−100

0

100
Speed errors for UAV 2 (following UAV 1)

X

Y

0 2 4 6 8 10 12
−300

−200

−100

0
Speed errors for UAV 3 (following UAV 2)

X

Y

Fig. 7. Velocity errors of leader and followers in (x, y) plane

0 2 4 6 8 10 12
−400

−300

−200

−100

0

100
Distance errors between UAV 1 and UAV 2

X

Y

0 2 4 6 8 10 12
−400

−300

−200

−100

0
Distance errors between UAV 2 and UAV 3

X

Y

Fig. 8. Distance errors of followers in (x, y) plane

Fig. 9. Margin assessment

CONCLUSION

We have introduced a new non-smooth programming tech-
nique for solving realistic complex problems. Its implementa-
tion SYSTUNE ranges much far beyond HINFSTRUCT and
can handle multiple models as well as a variety of control
design requirements. A core ingredient is the formulation
of problems involving soft and hard constraints through a
driving function whose critical points in the limit are KKT
points of the original problem. This can be implemented

very efficiently by exploiting basic sub-differential properties
of max functions. Our assessment of SYSTUNE indicates
that the proposed method is a powerful practical tool which
broadens the capabilities of control engineers in solving
challenging design problems.

ACKNOWLEDGEMENTS

SYSTUNE and HINFSTRUCT were implemented in col-
laboration with Pascal Gahinet (MathWorks). Non-smooth
concepts and algorithms for control design were developed
in the past decade with Dominikus Noll (Maths Institute,
Toulouse, France).

REFERENCES

[1] D. D. Peaucelle and D. Arzelier, “Robust multi-objective control
toolbox,” in Computer Aided Control System Design Conference, oct.
2006.

[2] S. Boyd, C. Barratt, and S. Norman, “Linear controller design: Limits
of performance via convex optimization,” Proc. IEEE, vol. 78, no. 3,
pp. 529–574, Mar. 1990.

[3] C. Scherer, “Multi-objective control without Youla parameterization,”
in Perspectives in robust control, ser. Lecture Notes in Control and
Information Sciences, S. O. Moheimani, Ed. Springer Berlin /
Heidelberg, 2001, vol. 268, pp. 311–325.

[4] P. Gahinet and P. Apkarian, “Decentralized and fixed-structure H∞
control in MATLAB,” in Proc. IEEE Conf. on Decision and Control,
dec. 2011, pp. 8205 –8210.

[5] P. Apkarian, “Internet pages,” http://pierre.apkarian.free.fr, 2010.
[6] P. Apkarian and D. Noll, “Nonsmooth H∞ synthesis,” IEEE Trans.

Aut. Control, vol. 51, no. 1, pp. 71–86, 2006.
[7] ——, “Nonsmooth optimization for multiband frequency domain

control design,” Automatica, vol. 43, no. 4, pp. 724–731, April 2007.
[8] E. Polak, Optimization : Algorithms and Consistent Approximations.

Applied Mathematical Sciences, 1997.
[9] A. Simoes, P. Apkarian, and D. Noll, “A nonsmooth progress function

for frequency shaping control design,” IET Control Theory & Appli-
cations, vol. 2, no. 4, pp. 323–336, April 2008.

[10] D. P. Bertsekas, Nonlinear Programming. Belmont, Mass.: Athena
Scientific, USA, 1995.

[11] J. V. Burke, D. Henrion, A. S. Lewis, and M. L. Overton, “Stabilization
via nonsmooth, nonconvex optimization,” IEEE Trans. Aut. Control,
vol. 51, no. 11, pp. 1760–1769, Nov. 2006.

[12] E. Simon, “Optimal static output feedback design through direct
search,” in Proc. IEEE Conf. on Decision and Control, 2011, pp. 296–
301.

[13] A. R. Conn, K. Scheinberg, and L. N. Vicente, Introduction to
Derivative-Free Optimization, ser. MPS-SIAM Series on Optimization.
Philadelphia: SIAM, 2008.

[14] C. Audet and J. E. Dennis Jr., “Mesh adaptive direct search algorithms
for constrained optimization,” SIAM Journal on Optimization, vol. 17,
no. 1, pp. 188–217, 2006.

[15] T. G. Kolda, R. M. Lewis, and V. Torczon, “Optimization by direct
search: new perspectives on some classical and modern methods,”
SIAM Review, vol. 45, no. 3, pp. 385–482, 2003.

[16] A. Oi, C. Nakazawa, T. Matsui, H. Fujiwara, K. Matsumoto,
H. Nishida, J. Ando, and M. Kawaura, “Development of PSO-
based PID tuning method,” in International Conference on Control,
Automation and Systems, oct. 2008, pp. 1917 –1920.

[17] J. Lieslehto, “PID controller tuning using evolutionary programming,”
in American Control Conference, vol. 4, 2001, pp. 2828 –2833 vol.4.

[18] J. Lavaei, A. Momeni, and A. Aghdam, “A model predictive decen-
tralized control scheme with reduced communication requirement for
spacecraft formation,” IEEE Trans. on Control System Technology,
vol. 16, no. 2, pp. 268 –278, march 2008.

[19] Robust Control Toolbox 4.2, “The MathWorks Inc. Natick, MA, USA,”
2012.

[20] D. Gangsaas, K. Bruce, J. Blight, and U.-L. Ly, “Application of modern
synthesis to aircraft control: Three case studies,” IEEE Trans. Aut.
Control, vol. AC-31, no. 11, pp. 995–1014, Nov. 1986.

