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Abstract

Several challenging problems of robust filtering are addressed in this paper. First
of all, we exploit a new LMI (Linear Matrix Inequality) characterization of minimum
variance or of H2 performance, and demonstrate that it allows the use of parameter-
dependent Lyapunov functions while preserving tractability of the problem. The re-
sulting conditions are less conservative than earlier techniques which are restricted to a
fixed, that is not depending on parameters, Lyapunov functions. The rest of the paper
is focusing on reduced-order filter problems. New LMI-based nonconvex optimization
formulations are introduced for the existence of reduced-order filters. Then, several
efficient optimization algorithms of local and global optimization are proposed. Non-
trivial and less conservative relaxation techniques are discussed as well. The viability
and efficiency of the proposed tools are confirmed through computational experiments
and also through comparisons with earlier methods.

1 Introduction

The standard robust filter problem can be formulated as follows. Consider the uncertain

linear system
ẋ = Ax + Bw, A ∈ R

n×n

y = Cx + Dw, D ∈ R
p×m

z = Lx , L ∈ R
q×n

(1)

where x ∈ Rn is the state, y ∈ Rp is the measured output, z ∈ Rq is the output to be
estimated and w ∈ Rm is the zero mean white noise with identity power spectrum density

matrix. The state-space data are subject to uncertainties and obey the polytopic model



A B

C D

L 0


 ∈








A(α) B(α)
C(α) D(α)

L(α) 0


 =

s∑

i=1

αi




Ai Bi

Ci Di

Li 0


 , α ∈ Γ



 , (2)

where Γ is the unit simplex

Γ := {(α1, ..., αs) :
s∑

i=1

αi = 1, αi ≥ 0} .
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The problem consists in constructing an estimator or “filter” in the form

ẋF = AF xF + BF y, AF ∈ R
k×k

zF = LF xF , LF ∈ R
q×k (3)

which provides good robust estimation in the minimum variance sense of the output z in

(1). In other words, we want to minimize

max
α∈Γ

E[(z − zF )T (z − zF )] (4)

where E means the mathematical expectation. Note that the expression (4) involves all
possible value of the uncertainty α, hence the term robust filtering problem. When k = n

the filter (3) will be referred to as the full-order filter and will be termed reduced-order
when k < n.

Classically, when all data of the system (1) are exactly known, the optimal value of
(4) is Tr(LPLT ) and the optimal full-order solution is the well-known Kalman filter [1]
defined as

AF = A −BF C, BF = PCT (DDT )−1, LF = L ,

where P ≥ 0 is the stabilizing solution of the Riccati equation

AP + PAT − PCT (DDT )−1CP + BBT = 0. (5)

Note that the existence of the stabilizing solution P ≥ 0 of Riccati equation (5) implies
that matrix A in (1) must be asymptotically stable.

An alternative solution to the full-order filter problem with exact data can be obtained

by using LMI characterizations. Indeed, rewrite (1)-(3) in compact form as

ẋcl = Aclxcl + Bclw,

zcl = [L −LF ] xcl,
(6)

where

xcl =

[
x

xF

]
, Acl =

[
A 0

BF C AF

]
, Bcl =

[
B

BF D

]
, zcl = z − zF . (7)

Then, it has been established (see e.g. [7]) that E(z2
cl) < ν if and only if the following

matrix inequalities are feasible in the variables X , Z, AF , BF and LF

[AT
clX +XAcl XBcl

BT
clX −I

]
< 0, (8)


 X

[
LT

−LT
F

]

[ L −LF ] Z


 > 0, (9)

Tr(Z) < ν . (10)

Thus, the problem can be formulated alternatively as

min{ν : (8)− (10)} . (11)
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A quick justification can be inferred as follows. It is well known that

E(zT
clzcl) = Tr(CclPCT

cl), (12)

where Ccl = [L −LF ] and P is the solution of the Lyapunov equation

PAT
cl +AclP + BclBT

cl = 0. (13)

From (8), we infer
X−1AT

cl +AclX−1 + BclBT
cl < 0

and thus with Acl assumed stable, we have P < X−1, which together with (9) and (10)

gives
E(zT

clzcl) = Tr(CclPCT
cl) < Tr(CclX−1CT

cl) < Tr(Z) < ν.

Note that (8) is a nonlinear matrix inequality in the variables AF , BF and X because
of the product terms XAcl. However, there are several ways to reduce it to LMIs by

linearizing techniques in the spirit of [11, 14] or by using the Projection Lemma in [9]. As
a result, the problem can be reduced to the convex optimization problem of minimization

of a linear objective over LMI constraints, an easily tractable problem with the help of
currently available SemiDefinite Programming solvers.

The advantage of the proposed LMI approach, and this is an important contribution
of this paper, is that it still works for the problem with unknown data as in (2) and

with parameter-dependent functions X := X (α). Note that on one hand uncertainties are
hardly handled with the Riccati equation approach and, on the other hand, parameter-

dependent Lyapunov functions are far less conservative than customary fixed quadratic
Lyapunov functions.

Similarly to other results in the vein of robust control for polytopic systems, a variable

X , not depending on the uncertainties, has been utilized in [11, 14] for verifying the
conditions (8) and (9). The resulting robust estimation may be conservative as the function

X used for verifying (8) and (9) is fixed for all values of the parameter α. This is well-
known to be a source of conservatism in applications. The issue of exploiting parameter-

dependent functions X (α) to handle problems with uncertainties is very challenging both
in robust control and robust filtering. The latter issue is examined throughout this paper.

We extend the results in [5] to the robust filtering problem, and derive specific linearizing
transformations which lead to tractable LMI conditions for the full-order robust filtering

problem with parameter-dependent functions. These results are naturally less conservative
than previous ones. The latter are recovered as a special case by imposing a constant
Lyapunov function (X (α) := X , ∀α) in the proposed approach.

Another challenging problem is the reduced-order filter problem which is known to be
nonconvex even in the exact data case. These problems have been partially addressed

e.g. in [14, 18]. Here we will propose several new solution methods for this problem.
Namely, we introduce a new LMI characterization which allows us to propose several less

conservative relaxations of the original problem. These relaxations are combined with
specialized local and global optimization algorithms to construct good practical solutions.

The paper is organized as follows. Robust filter problems are considered in Section 2.
Section 3 is devoted to the reduced-order case with known system data and discusses var-

ious relaxations and algorithms. Finally, examples illustrating the viability and efficiency
of our approach are given in Section 4.
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The notation used throughout the paper is standard. MT is the transpose of a matrix

M while Tr(M ) is its trace. The notation M < 0 (M ≤ 0, resp.) means that M is
negative definite (negative semi-definite, resp.). In symmetric block matrices or long

matrix expressions, we use ∗ as an ellipsis for terms that can be induced by symmetry. A
basis of the nullspace of a matrix A will be denoted NA.

Some technical results in the paper make use of the Projection Lemma.

Lemma 1 (Projection Lemma) [9] Given a symmetric matrix Ψ ∈ R
m×m and two

matrices P, Q of column dimension m, the following problem

Ψ + PT XTQ + QTXP < 0.

is solvable in a matrix X of compatible dimension if and only if

N T
P ΨNP < 0, N T

QΨNQ < 0

where NP and NQ are any basis of the nullspace of P and Q, respectively.

2 Robust minimum variance filter problem

A drawback of the standard matrix inequality characterization (8)-(9) is that the function

X used for checking the filter performance is closely interrelated with the state-space
variables AF and BF . This makes the problem difficult to solve and causes unnecessary

restrictions on the filter variables. This is particularly critical when uncertainties come
into play as for polytopic systems (2). To overcome this difficulty, we exploit a reciprocal

variant of the Projection Lemma 1 to alleviate the interrelation between X and filter
variables. This technique introduces an extra slack variable V which brings additional

flexibility in the robust filtering problem. An important consequence is that the apparent
nonconvexity of filter synthesis problems with parameter-dependent Lyapunov functions
can be bypassed. Moreover, because the function X is depending on uncertain parameters

the resulting characterizations are generally far less conservative than customary single
quadratic approaches. The following lemma will be useful in that respect. Note that

for simplicity of the presentation, we shall drop the dependence of variables and data on
uncertainties α for a while.

Lemma 2 The constraints (8)-(10) are feasible in AF , BF , CF ,X , Z and ν if and only
if the following conditions are feasible in AF , BF , LF , X , Z, ν and V




−(V + V T ) V TAcl +X V TBcl V T

AT
clV + X −X 0 0

BT
clV 0 −I 0
V 0 0 −X


 < 0, (14)


 X

[
LT

−LT
F

]

[ L −LF ] Z


 > 0, (15)

Tr(Z) < ν. (16)
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Proof: Rewrite (14) as




0 X 0 0
X −X 0 0
0 0 −I 0

0 0 0 −X


 + PTVQ+QTV TP < 0 (17)

with
P = [−I Acl Bcl I ] , Q = [ I 0 0 0 ] .

Noting that

NP =




Acl Bcl I

I 0 0

0 I 0
0 0 I


 , NQ =




0 0 0
I 0 0

0 I 0
0 0 I




and aplying the Projection lemma 1 with respect to variable V in (17), the existence of V

and X satisfying (17) is equivalent to the existence of X satisfying the inequality



AT

clX +XAcl − X XBcl X
BT

clX −I 0
X 0 −X


 < 0

which is equivalent to (8) by a Schur’s complement argument.

See also [5] for more details on other equivalent LMI characterizations to (8)-(10).

2.1 Robust full-order filters

By exploiting Lemma 2, it is possible to derive tractable synthesis conditions for the robust

filter problem in the full-order case. Hereafter, we shall need partitions of V and X in
(14)-(15) in the form

V =

[
V11 V12

V21 V22

]
, X =

[
X1 XT

3

X3 X2

]
, (18)

where for the full-order case, all submatrices appearing in (18) are of size n × n.

Note that (14) implies that V is nonsingular and by using a small perturbation if
necessary, we can also assume, without loss of generality, that V21, V22 are nonsingular as

well [5].
Now, using the notations (7) and (18), the general matrix inequality (14) becomes




−(V11 + V T
11) ∗ ∗ ∗ ∗ ∗ ∗

−(V21 + V T
12) −(V22 + V T

22) ∗ ∗ ∗ ∗ ∗
AT V11 + CT BT

F V21 + X1 AT V12 + CT BT
F V22 + XT

3 −X1 ∗ ∗ ∗ ∗
AT

F V21 + X3 AT
F V22 + X2 −X3 −X2 ∗ ∗ ∗

BT V11 + DTBT
F V21 BT V12 + DTBT

F V22 0 0 −I ∗ ∗
V11 V12 0 0 0 −X1 ∗
V21 V22 0 0 0 −X3 −X2




< 0

(19)
This condition can then be turned into an LMI constraint in two steps:
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1. perform in (19) the congruence transformation

diag [ I V −1
22 V21 I V −1

22 V21 I I V −1
22 V21 ] (20)

2. introduce the (new) linearization transformations

ÂF = V T
21AF V −1

22 V21 (21)

B̂F = V T
21BF (22)

S1 = V T
21V

−T
22 V21 (23)

S2 = V T
21V

−T
22 V T

12 (24)

X̂ =

[
X̂1 X̂T

3

X̂3 X̂2

]
:=

[
I 0
0 V T

21V
−T
22

]
X

[
I 0
0 V −1

22 V21

]
. (25)

Note that because of the invertibility of the matrices involved, the linearizing transforma-

tions are back and forth, thus the resulting conditions are equivalent. We end up with the
following LMI condition:




−(V11 + V T
11) ∗ ∗ ∗ ∗ ∗ ∗

−(S1 + S2) −(S1 + ST
1 ) ∗ ∗ ∗ ∗ ∗

ATV11 + CT B̂T
F + X̂1 AT ST

2 + CT B̂T
F + X̂T

3 −X̂1 ∗ ∗ ∗ ∗
ÂT

F + X̂3 ÂT
F + X̂2 −X̂3 −X̂2 ∗ ∗ ∗

BT V11 + DT B̂T
F BT ST

2 + DT B̂T
F 0 0 −I ∗ ∗

V11 ST
2 0 0 0 −X̂1 ∗

S1 S1 0 0 0 −X̂3 −X̂2




< 0 .

(26)

Similarly, again with the notations (7) and (18), LMI (15) becomes




X1 XT
3 LT

X3 X2 −LT
F

L −LF Z


 > 0 . (27)

The congruent transformation

diag [ I V −1
22 V21 I ] (28)

then yields 


X̂1 X̂3
T

LT

X̂3 X̂2 −L̂T
F

L −L̂F Z


 > 0 , (29)

where L̂F is defined as

L̂F := LF V −1
22 V21 . (30)

Summing up , we have derived the following intermediate result.

Lemma 3 The nonlinear matrix inequalities (14)-(16) are feasible in

[
AF BF

LF 0

]
, X , Z, V, ν ,
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if and only if LMIs (16), (26) and (29) are feasible with respect to
[
ÂF B̂F

L̂F 0

]
, V11, X̂, S1, S2, ν . (31)

The triple (AF , BF , LF ) defining the full-order filter (3) is then readily derived from
the variables in (31) solution to LMIs (16), (26) and (29) according to the following steps:

(i) compute V22, V21 by solving the factorization problem

S1 = V T
21V

−1
22 V21 .

(ii) compute (AF , BF , LF ) using
[
AF BF

LF 0

]
:=

[
V −T

21 0

0 I

] [
ÂF B̂F

L̂F 0

] [
V −1

21 V22 0

0 I

]
. (32)

Compared with the linearization techniques used in [5, 11, 14], the advantage of the
transformations (21)-(25) and (30) is that the intermediate variables (ÂF , B̂F , L̂F ) are

independent of the system data so that the very same approach is still valid for systems
depending on uncertain parameters. The link between these entities and the variables X̂

is, as in [5], via the slack variable V . These features are crucial in dealing with uncertain

systems of the class (2). Indeed, from (26) and (29), and the system data satisfying (2),
we are allowed to use parameter-dependent function X̂(α) in the form

X (α) =
s∑

i=1

αiXi :=
s∑

i=1

αi

[
X1,i XT

3,i

X3,i X2,i

]
, α ∈ Γ (33)

for enforcing conditions (14)-(15) while still preserving the problem tractability. The main

result of this section is Theorem 1 which characterizes robust estimation in the minimum
variance sense with the help of such “polytopic” Lyapunov functions. Note also that X (α)

is positive definite for all admissible values of α if and only if this holds for the Xi’s.

Theorem 1 (robust full-order) There exists a (full-order) filter such that the worst-

case condition
max
α∈Γ

E[(z − zF )T (z − zF )] < ν ,

holds true, that is for all admissible systems described in (2), whenever the following
(vertex) conditions hold simultaneously:



−(V11 + V T
11) ∗ ∗ ∗ ∗ ∗ ∗

−(S1 + S2) −(S1 + ST
1 ) ∗ ∗ ∗ ∗ ∗

AT
i V11 + CT

i B̂T
F + X̂1,i AT

i ST
2 + CT

i B̂T
F + X̂T

3,i −X̂1,i ∗ ∗ ∗ ∗
ÂT

F + X̂3,i ÂT
F + X̂2,i −X̂3,i −X̂2,i ∗ ∗ ∗

BT
i V11 + DT

i B̂T
F BT

i ST
2 + DT

i B̂T
F 0 0 −I ∗ ∗

V11 ST
2 0 0 0 −X̂1,i ∗

S1 S1 0 0 0 −X̂3,i −X̂2,i




< 0(34)




X̂1,i X̂T
3,i LT

i

X̂3,i X̂2,i −L̂T
F

Li −L̂F Z


 > 0(35)

i = 1, . . . , s,
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together with (16), with the notation

[
X̂1,i X̂T

3,i

X̂3,i X̂2,i

]
:=

[
I 0
0 V T

21V
−T
22

] [
X1,i XT

3,i

X3,i X2,i

] [
I 0
0 V −1

22 V21

]
. (36)

The sought triple (AF , BF , LF ) defining the full-order filter (3) can then be computed
as in Lemma 3. The polytopic function establishing robust estimation is given by (33) and

(36).
Consequently, a best upper bound of the minimum of (4) is provided by the optimization

problem
min

V11,S1,S2,ÂF ,B̂F ,L̂F ,X̂i,ν

{ν : (16), (34), (35), i = 1, 2, ..., s.} . (37)

Proof: The proof is immediate from Lemma 3 and the properties of convex combinations.

2.2 LMI relaxation for robust reduced-order filters

Hereafter, we consider the case when the order of the filter is set to k < n. Then, of course
(14)-(16) with Acl,Bcl, Ccl defined by (7) are still in force. However, with the partition
(18) the matrix V21 becomes rectangular of dimension k × n. This makes the change of

variable (32) no longer valid. One can get rid of this difficulty by imposing some (possibly
conservative) special structure on the slack variable V21. With such a restriction, similar

linearizations are possible. Indeed, take

V21 = [ Ṽ21 0k×(n−k) ] (38)

where Ṽ21 is a square matrix of dimension k × k, which is supposed to be regular. Then,
performing the congruent transformation

diag [ I V −1
22 Ṽ21 I V −1

22 Ṽ21 I I V −1
22 Ṽ21 ] (39)

in (19), yields the following LMI




−(V11 + V T
11) ∗ ∗ ∗ ∗ ∗ ∗

−(S̃1 + S2) −(S1 + ST
1 ) ∗ ∗ ∗ ∗ ∗

ATV11 + CT B̃T
F + X̂1 ATST

2 + CT B̂T
F + X̂T

3 −X̂1 ∗ ∗ ∗ ∗
ÃF + X̂3 ÂF + X̂2 −X̂3 −X̂2 ∗ ∗ ∗

BT V11 + DT B̃T
F BT ST

2 + DT B̂T
F 0 0 −I ∗ ∗

V11 ST
2 0 0 0 −X̂1 ∗

S̃1 S1 0 0 0 −X̂3 −X̂2




< 0

(40)
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with the definitions

B̃F =

[
B̂F

0(n−k)×p

]
, B̂F = Ṽ T

21BF

S̃1 = [S1 0k×(n−k) ] , S1 = Ṽ T
21V

−T
22 Ṽ21,

S2 = Ṽ T
21V

−T
22 Ṽ T

12,

ÃF = [ ÂF 0k×(n−k) ] , ÂF = Ṽ T
21AF Ṽ −1

22 Ṽ21,

[
X̂1 X̂T

3

X̂3 X̂2

]
=

[
I 0
0 Ṽ T

21V
−T
22

]
X

[
I 0
0 V −1

22 Ṽ21

]

(41)

Analogously, the congruent transformation

diag [ I V −1
22 Ṽ21 I ] (42)

allow to turn (27) into (29) with

L̂F = LF V −1
22 Ṽ21. (43)

Thus, we are now in a position to state the following reduced-order counterpart of Theorem

1.

Theorem 2 (relaxation for robust reduced-order filter) There exists a reduced kth-
order filter such that the worst-case condition

max
α∈Γ

E[(z − zF )T (z − zF )] < ν ,

holds true, that is for the uncertain system described in (2), whenever LMIs (16), (29)

and (40) are satisfied for all vertex indices i = 1, . . . , s, i.e. (16), (35), and



−(V11 + V T
11) ∗ ∗ ∗ ∗ ∗ ∗

−(S̃1 + S2) −(S1 + ST
1 ) ∗ ∗ ∗ ∗ ∗

AT
i V11 + CT

i B̃T
F + X̂1,i AT

i ST
2 + CT

i B̂T
F + X̂T

3i −X̂1,i ∗ ∗ ∗ ∗
ÃF + X̂3,i ÂF + X̂2,i −X̂3,i −X̂2,i ∗ ∗ ∗

BT
i V11 + DT

i B̃T
F BT

i ST
2 + DT

i B̂T
F 0 0 −I ∗ ∗

V11 ST
2 0 0 0 −X̂1,i ∗

S̃1 S1 0 0 0 −X̂3,i −X̂2,i




< 0(44)

i = 1, 2, ..., s.

The triple (AF , BF , LF ) defining the kth-order filter (3) is obtained from the solution

V11, S1, S2, ÂF , B̂F , L̂F , of these LMIs by steps analogous to those in Theorem 1 with V21

replaced with Ṽ21 while X (α) verifying (14)-(16) is defined as

X (α) =

[
I 0
0 V T

22Ṽ
−T
21

] s∑

i=1

αiX̂i

[
I 0
0 Ṽ −1

21 V22

]
. (45)

Consequently, an upper bound of the minimum of (4) for reduced-order (k < n) filters

is provided by the LMI optimization problem

min
V11,S1,S2,ÂF ,B̂F ,L̂F ,ν,X̂i

{ν : (16), (35), (44)} . (46)
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3 Optimal reduced-order filter

An obvious advantage of the linearization techniques in the previous section is that it
provides an accurate and practically tractable approach for the full-order robust filtering

problems. It also gives a relaxation for the reduced-order case. This relaxation may,
however, be arbitrarily conservative. The purpose of this section is to derive a convenient

optimization formulation for the synthesis of reduced-order filters with exact data in (2),
that is Ai := A, Bi := B, etc. Even with this simplification in force, the reduced-order
case is very hard because of its inherent nonconvexity. To tackle this problem, the number

of complicating or nonconvex variables is reduced as much as possible. The nonconvex
constraints are reformulated in such a way that they are easily handled by optimization

algorithms. Local and global optimization techniques are considered at different stages of
a general optimization process to improve efficiency. Conjointly, new relaxation techniques

are introduced.
Note that in [18] a problem related to the reduced-order filter has also been considered.

Instead of the optimal kth-order filter problem, it is concerned with the kth-order filter
which approximates the full-order Kalman filter. This approach provides only more or

less accurate solutions to the problem with unknown degree of optimality. In this setting,
an iterative algorithm has been proposed in [18] that generates a convergent sequence
to a stationary point. This algorithm requires either solving multidimensional differen-

tial equations or computations involving the exponential function of matrices which are
computationally costly.

3.1 Rank-constrained LMI formulation and relaxation

When all matrices A, B, C and D in (1) are exactly known, we shall use an alternative
characterization derived below.

Set K := [AF BF ] and re-express Acl,Bcl in (7) as

Acl = Aa + BaKCa, Bcl = B1,a + BaKD21,a, (47)

with the notations

Aa =

[
A 0
0 0

]
, Ba =

[
0
I

]
, Ca =

[
0 I

C 0

]
, B1,a =

[
B

0

]
, D21,a =

[
0
D

]
,

C1,a = [ L 0 ] , Da = [ 0 −I ] .

(48)

Then rewrite (8)-(9) as
[
AT

aX +XAa XB1,a

BT
1,aX −I

]
+

[
CT

a

DT
21,a

]
KT [BT

a X 0 ] +

[XBa

0

]
K [Ca D21,a ] < 0, (49)

[ X CT
1,a

C1,a Q

]
+

[
0

DT
a

]
LT

F [ 0 I ] +

[
0
I

]
LF [ Da 0 ] > 0 . (50)

Using the Projection Lemma 1, the existence of K in (49) is equivalent to

N T
E

[
AT

aX +XAa PB1,a

BT
1,aX −I

]
NE < 0 (51)

N T
G

[
AT

aX +XAa XB1,a

BT
1,aX −I

]
NG < 0 (52)
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with

E := [BT
a X 0 ] = [BT

a 0 ]

[X 0

0 I

]
, G := [Ca D21,a ] .

It is readily seen that

NE =

[X−1 0

0 I

]
N[BT

a 0] .

Therefore, we get the equivalences

(51) ⇔ N T

[BT
a 0 ]

[X−1AT
a + AaX−1 B1,a

BT
1,a −I

]
N[BT

a 0] < 0 , (53)

(52) ⇔ N T
G

[
AT

aX +XAa PB1,a

BT
1,aX −I

]
NG < 0 . (54)

Partitioning X and its inverse as

X =

[
X N

NT ∗
]

> 0, X−1 =

[
Y M

MT ∗
]

> 0 (55)

and using the relationships

N[BT
a 0] =




I 0

0 0
0 I


 , NG =




W1

0
W2


 , where

[
W1

W2

]
= N[C D ] ,

it is readily checked that (53) and (54) reduce to

[
Y AT + AY B

BT −I

]
< 0 , (56)

N T

[C D ]

[
XA + ATX XB

BT X −I

]
N[C D ] < 0 . (57)

We note that (53) and (54) are LMIs in (X, Y ). Similarly, by virtue of the Projection
Lemma, the existence of LF in (50) is equivalent to X > 0 and the feasibility of the
following LMI [

X LT

L Z

]
> 0 . (58)

The last point now is the condition imposed on X and Y that makes the completion

(55) possible. It is known [9] that this completion is indeed possible if and only if

X −Q = Y −1 (59)

where Q is a symmetric matrix of size n × n satisfying

Q ≥ 0, rank(Q) ≤ k . (60)

From (59), in order to reduce the number of complicating variables in (56)-(57), we
perform in (56) the congruent transformation:

[
Y −1 0
0 I

]
. (61)
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This yields the equivalent inequality

[
ATY −1 + Y −1A Y −1B

BT Y −1 −I

]
< 0 , (62)

which by virtue of (59) can be written as

[
AT (X −Q) + (X −Q)A (X −Q)B

BT (X −Q) −I

]
< 0 . (63)

Thus, the optimal k−th-order filter can be formulated as

min
X,Q,Z,ν

{ν : (10), (57), (58), (60), (63)} , (64)

where only (60) is the source of nonconvexity. This difficulty is our main focus hereafter.

When the optimal solution of (64) has been found, the optimal k-order filter (3) is easily
derived by solving (49), (50) which for a given X become LMIs with respect to K =

[AF BF ] and LF .
Some convex relaxations of (60) are considered first which are based on the following

result.

Lemma 4 A positive semi-definite matrix Q of dimension n × n has a rank less than
k ≤ n if it has at least (n− k) zero diagonal entries, i.e. there are indexes 1 ≤ i1 < i2 <

... < in−k ≤ n such that Qijij = 0, j = 1, 2, ..., (n− k).

From the above lemma, it follows that for any 1 ≤ i1 < i2 < ... < in−k ≤ n an upper

bound for (64) is provided by the following (convex) LMI optimization problem

(RL) min
X,Q,Z,ν

{
ν : (10), (57), (58), (63), Q≥ 0, Qijij = 0, j = 1, 2, ..., (n− k)

}
. (65)

Clearly, when either k = n (full-order case) or k = 0 (static case) then (64) is equivalent
to (65), i.e. (64) becomes a (convex) LMI optimization problem.

3.2 Tailored optimization algorithms

Note that Q satisfies (60) if and only if

Q = RRT (66)

with some new slack matrix variable R of dimension n×k. Therefore, (64) can be regarded
as an LMI program subject to the additional quadratic constraint (66). In this setting,

various optimization techniques, local or global, can be used. See [2, 3, 4, 8, 15, 16] for a
sample. For efficiency reasons, it is necessary that these algorithms are specifically tailored

to the problem properties and exploit structural informations. This is considered from in
the sequel.
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3.2.1 Penalty/conditional gradient method

Trivially, (66) is equivalent to

[
Q R

RT I

]
≥ 0 (67)

Tr(Q −RRT ) = 0 (68)

where (67) is an LMI constraint. Thus, the optimal kth-order filter problem can be recast

as
min

X,Q,Z,ν,R
{ν : (10), (57), (58), (63), (67), (68)} . (69)

Note that (67) implies that Tr(Q−RRT ) ≥ 0, thus a most natural method to handle the
nonconvex constraint (68) is to use a penalty term µTr(Q−RRT ) combined with the cost

function ν. This penalty term prescribes a high cost to the violation of the constraint
(68), hence will force this condition if µ is chosen sufficiently large. The original problem

(69) is then replaced with:

min
{
ν + µTr(Q− RRT ) : (10), (57), (58), (63), (67)

}
(70)

It is classically known [6] that the global optimal value of (70) tends to that of (69)

as µ → +∞. However, increasing the penalty parameter µ renders the problem more and
more ill-conditioned, so a standard implementation of the penalty technique follows the

following iterative scheme:

1. select an initial feasible value of the variables, and a penalty parameter µ0 > 0,

2. solve the subproblem (70)

3. update the penalty parameter

µκ+1 :=

{
βµκ if Tr(Qκ −RκRκT ) > γTr(Qκ−1 − Rκ−1Rκ−1T

)

µκ if Tr(Qκ −RκRκT ) ≤ γTr(Qκ−1 − Rκ−1Rκ−1T
)

(71)

4. if Tr(Qκ − RκRκT ) is small enough stop, else go to 2.

Typical values of the parameters are β = 5 and γ = 0.25. Hence, the penalty parameter
is increased when the observed violation of the constraint does not show sufficient decrease
over the previous minimization.

Note that the subproblem (70) is solved locally using its important concave feature. As
the penalized ν + µTr(Q−RRT ) is concave [2, 3], its linear approximation at the current

iterate Rκ is also its global majorant, i.e.

ν+µ[Tr(Q)−Tr(RRT )] ≤ lµ(ν, Q, R) := ν+µ[Tr(Q)−Tr(RκRκT )−2Tr((R−Rκ)RκT )],

for all ν, Q, R. It should be emphasized that this property is not satisfied in general

nonlinear problems.
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Thus, the subproblem (70) can be solved by conditional gradient steps which use

successive linear approximations of the penalized function according to the sequence of
iterates:

(νκ+1, Qκ+1, Rκ+1) := argmin {lµκ(ν, Q, R) : (10), (57), (58), (63), (67)} . (72)

A stationary point is obtained when (νκ+1, Qκ+1, Rκ+1) = (νκ, Qκ, Rκ), the linear model

cannot be decreased further and the inner steps can be stopped. Note also that (72) is
readily solved as an LMI program. This provides a feasible descent segment [Rκ, Rκ+1]

in the set defined by the LMI constraints. Again, invoking the concavity of the penalized
cost, the best next iterate is given by Rκ+1 since the minimum value of a concave function

is attained at the extreme points (unit descent step size).

3.2.2 Augmented Lagrangian technique

The advantage of the penalty/conditional gradient method introduced previously lies in
the simplicity of its implementation and also in the fact that good upper bounds are usually
attained in a few iterations. However, like most first-order methods it may be very slow

in the neighborhood of a stationary point. Also, large penalty parameters are a source of
ill-conditioning in the conditional gradient scheme. These difficulties can be overpassed by

using a more sophisticated augmented Lagrangian/Newton method in which the penalized
cost in (70) is replaced with

ν + Tr(Λ(RRT −Q)) + µTr
(
(RRT −Q)(RRT −Q)T

)
, (73)

where the Lagrange multipliers Λ and the penalty µ must be updated at each outer
iteration. It is also generally recommended to use conditional Newton steps instead of
conditional gradient steps in the inner iteration to achieve good rates of convergence.

Also, the multiplier update must obey at least a first-order rule. More details on this
technique can be found in [8] for robust control problems. The Lagrangian technique,

however, is superfluous when the global methods in Section 3.2.3 are implemented.

3.2.3 Branch and bound technique

As mentioned above, the LMI condition (67) implies Tr(Q−RRT ) ≥ 0, we can, therefore
replace (68) with

Tr(Q −RRT ) = Tr(Q) −
n∑

i=1

k∑

j=1

R2
i,j ≤ 0 (74)

and instead of (69), we consider the equivalent problem

min
X,Q,Z,ν,R

{ν : (10), (57), (58), (63), (67), (74)} . (75)

The difficulty of (75) is concentrated in the nonconvex constraint (74) which nevertheless
has the following special structures useful for branching and bounding in Branch and
Bound (BB) resolution methods of global optimization.
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• As mentioned, the left hand side of (74) is a concave function on Q, R. Hence

(74) is actually an inverse convex constraint, i.e. (75) is a convex program with
additional inverse convex constraint. Such class of nonconvex problems have been

studied intensively in global optimization [12, 17].

• Problem (75) becomes convex when variable R is held fixed, i.e. only R can be

regarded as a “complicating variable” causing the problem difficulty [13, 17, 15].
Therefore it is sufficient to perform the branching process in R-space instead of

the whole space of all variables (X, Q, Z, ν, R). This alleviates the computational
burden.

• From (74), the function −Tr(RRT ) is separately concave in each variable Ri,j [17].

Therefore for every rectangle

M = {R : mij ≤ Ri,j ≤ Mij , i = 1, 2, ..., n; j = 1, 2, ..., k}

with given Mij > mij, the best convex relaxation of the inverse convex constraint
(74) is [17, Prop. 5.7]

Tr(Q)− Tr[(Mlw +Mup)R
T −MlwMT

up] ≤ 0, Mlw = [m]ij, Mup = [M ]ij. (76)

Accordingly, a good lower bound of the optimal value of (75) with R ∈ M is provided

by the following LMI optimization problem

β(M) = min
X,Q,Z,ν,R

{ν : (10), (57), (58), (63), (67), (76)} . (77)

• With the optimal solution (X(M), Q(M), Z(M), ν(M), R(M)) of (77), an upper
bound of the value of (75) can be easily computed by the following LMI program

γ(M) = min
X,Z,ν

{
ν : (10), (57), (58), Q = R(M)R(M)T

}
. (78)

Based on the above observations, a suitable BB algorithm solving the global optimal

solution of (75) can be implemented (see [17, 15] for more details).

4 Illustrative Examples

This section discusses some examples and provide comparison results with earlier tech-
niques both for robust and reduced-order filtering problems..

4.1 Robust filter examples

We consider the following example borrowed from [11, (68)-(70)]

ẋ =

[
0 −1 + 0.3α

1 −0.5

]
x +

[−2 0
1 0

]
w

y = [−100 + 10β 100 ]x + [ 0 1 ]w

z = [ 1 0 ] x

(79)
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with two alternative uncertainty set descriptions, either

|α| ≤ 1, |β| ≤ 1, (80)

or

|α| ≤ 1, α = β. (81)

The comparison between results obtained using Theorem 1 and 2 and those of [11, 14] are

provided in Table 1. LMI computations were performed using the Matlab LMI Control
Toolbox [10].

method system filter order best upper bound

[11] (79),(80) full 5.728

[14] (79),(80) full 4.867

Th. 1 (79),(80) full 2.382

[11] (79),(81) full 4.819

[14] (79),(81) full 4.373

Th. 1 (79),(81) full 2.382

[14] (79),(80) 1 4.946

Th. 2 (79),(80) 1 3.001

[14] (79),(81) 1 4.556

Th. 2 (79),(81) 1 3.079

Table 1: computational comparisons

robust full- and reduced-order filters

From this Table, the advantage of the proposed method appears clearly. Note that
with all α satisfying (81), the asymptotic stability of A(α) in (79) can be checked by a

single Lyapunov function V (x) = xT Xx. However, if we replace (81) with

|α| ≤ 3, |β| ≤ 1 (82)

then a single Lyapunov function is not satisfactory for checking the asymptotic stability,
eventhough A(α) in (79) is asymptotically for all |α| ≤ 3.2. As a result, the approaches

of [11, 14] with parameter-independent Lyapunov functions fails (LMI constraints are
infeasible). In contrast, the techniques of Theorems 1 and 2 are still operational in this

case. The computational results for problem (79), (82) and also problem (79) with

|α| ≤ 3, β = α (83)

are sketched in Table 2.

4.2 Reduced-order examples with exact data

Remind that we can use (40) or (65) for relaxing the optimal reduced-order filter problem

with exact system data. Our experiments show that the rank relaxation (65) often gives
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method system filter order best upper bound

[11] or [14] (79),(82) full +∞
Th. 1 (79),(82) full 93.365

Th. 2 (79),(82) 1 106.493

[11] or [14] (79),(83) full +∞
Th. 1 (79),(83) full 100.963

Th. 2 (79),(83) 1 106.517

Table 2: Further computational comparisons

robust full- and reduced-order filters

much less conservative results than (40). Consider the following system borrowed from

[18, (5.4)-(5.6)]

ẋ =




0 1.0 0.5
−5.0 −0.02 0

1.5 0 −0.1


 x(t) +




0 0
1 0

1 0


 w

y = [ 1 1 −2 ]x + [ 0 1 ]w
z = [ 1 1 −2 ]x .

(84)

For the reduced 2nd-order case, the best value given in [18], is
√

ν = 4.74. After a few

iterations, the penalty/conditional gradient method in Subsection 3.2 achieves the much
better value

√
ν = 2.4503 corresponding to

Q =




2.3521 0.4489 −1.4617
0.4489 0.3310 −0.5034

−1.4617 −0.5034 1.1137


 .

The later value is very close to the true global optimal value
√

ν = 2.4253 found by BB

method in Subsection 3.2.3 which corresponds to

Q =




2.5425 0.4700 −1.6467

0.4700 0.3211 −0.5210
−1.6467 −0.5210 1.2668


 .

Consider a different example from [18, (5.4)-(5.6)]

ẋ =




0 −0.1 0 0 0

1 −0.3 0 0 0
0 −0.2 0 0 0.016

0 −0.3 1 0 0.06
0 −0.1 0.1 −1.5 −0.9




x +




0 1 0

0 0 0
1 0 0

0 0 0
0 1 0




w

y =

[
0.1 0 0 −0.5 1.6
0.1 0.2 0 −0.3 0.12

]
x +

[
0 0 1 0
0 0 0 1

]
w

z =

[
0.1 0 0 −0.5 1.6
0.1 0.2 0 −0.3 0.12

]
x .

(85)

17



The best result of [18] gives
√

ν = 2.06 for reduced 3rd-order filters. The relaxation

method of(65) yields the improved value
√

ν = 1.9120 corresponding to

Q =




0 0 0 0 0

0 0.1183 0 0.0563 0.0763
0 0 0 0 0

0 0.0563 0 0.6451 0.5659
0 0.0763 0 0.5659 2.1510




.

Note that this value is almost globally optimal for the nonconvex problem (64) since it is

very close to the full-order case,
√

ν = 1.77.

5 Concluding remarks

In this paper, different techniques and tools for robust and/or reduced-order minimum
variance filter problems have been developed. For the synthesis of robust filters, we intro-

duce a new LMI representation which allows the use of parameter-dependent Lyapunov
functions while preserving tractability of the problem. This approach generalizes and
improves on earlier techniques.

For the reduced-order synthesis, we have introduced more or less conservative relax-
ations. These relaxed formulations are readily solved as LMI programs but might fail to

achieve satisfactory performance levels. In such case, one can either use a penalty/conditional
gradient algorithm to get a better local solution or a combination of the penalty/conditional

gradient method and the BB method if global optimality is practically required.
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