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Abstract

We use a non-smooth trust-region method for H.,-control of infinite-dimensional
systems. Our method applies in particular to distributed and boundary control of
partial differential equations. It is computationally attractive as it avoids the use of
system reduction or identification. For illustration the method is applied to control
of a reaction-convection-diffusion system, to a Van de Vusse reactor, and on a cavity
flow control study.
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1 Introduction

Feedback control of partial differential equations and other infinite-dimensional systems
encounters limitations due to computational issues. In state-space, PDE models are overly
complex and not directly suited for controller synthesis. System reduction is required to
bring the state-space down to a size where synthesis methods are applicable. Not only is
this technically demanding, it also bears the risk of producing inaccurate or oversimplified
models, where H..-performance can no longer be guaranteed.

Computing the system transfer function directly from the infinite dimensional model
avoids this loss of information, but encounters a second difficulty. Customary strategies
now try to fit a finite-dimensional state-space model to the infinite-dimensional transfer
function. This uses optimization-based identification techniques, which are in conflict
with the H.-objective, as the two optimization procedures in series are no longer mean-
ingful. In addition, for unstable systems the identification often uses heuristics or ad hoc
approaches, which have no certificates.

The method we propose here avoids both pitfalls. We synthesize controllers directly
from the pre-computed frequency response, thereby avoiding system reduction and iden-
tification. Discretization for computation is performed in frequency space on a low-
dimensional object, which avoids the loss of information. Our tests demonstrate that
this works fast and reliably, once the transfer function is available. It turns out that the
success of our method hinges on the use of non-smooth optimization. We use a non-smooth
trust-region method first proposed in [4], which allows trial steps tailored to the specific
application. We prove convergence under Kiwiel’s aggregation rule, a question which had
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remained open in [4]. This given an affirmative answers to a question already posed in
[25] for the convex non-smooth trust-region method. For complementary information on
bundle methods see |26, 14, 21|, a mix of bundle and trust-regions is [29].

Design of controllers in the frequency domain based on non-smooth optimization has
already been performed in [19, 20, 22, 23, 18, 8|. H.,-control of a heat exchange system
is discussed in [28]. These approaches use either unstructured controllers, are based on
matrix inequalities, or differ with regard to the optimization technique.

The structure of the paper is as follows. In section 2 we outline our approach to
H,-control of infinite dimensional systems. In section 3 we discuss optimization and
present our non-smooth trust-region method originally proposed in [4], on which the
present approach rests. Convergence of the non-smooth trust-region method is discussed
in section 4. In section 5 we point to some particularities when applying the trust-
region method to H.-optimization. This concerns choice of working model, trial step,
and stability barrier, as well as the approximation error between the infinite-dimensional
H.-program and its discretization.

Numerical results for applications to infinite-dimensional control problems are pre-
sented in sections 6. Subsection 6.1 shows how the method is in general applied to a
boundary control problem, subsection 6.2 illustrates this in boundary H.-control of a
non-linear reaction-convection-diffusion equation, and subsection 6.3 for a non-linear Van
de Vusse reactor. Subsection 6.4 discusses a cavity flow control problem.

2 Control strategy

We consider an abstract linear time-invariant control system of the form

t = Ax+ Bu
G {y =Cz + Du (1)
where A is an unbounded linear operator on a Hilbert space Z generating a strongly
continuous semi-group, B a closed linear operator mapping the control input space U to
Z, C" a closed linear operator mapping Z to the space Y of measured outputs, and D a
closed linear operator mapping U to Y. For practical reasons we assume that U ~ RP and
Y ~ R™ which reflects the fact that the process is assessed by a finite number of sensors
and actuators, rendering our control law physically implementable. This means that B, D
are bounded, while C' is allowed to be closed unbounded. In addition, the domains of A
and C satisfy D(A) C D(C). As a consequence of the finite rank assumption on Y, U,
the transfer function G(s) = C(sI — A)"'B + D is defined on the resolvent set p(A) and
meromorphic on C, with values G(s) € C? x C™, see e.g. |15, 12].
We consider a class K € J# of feedback control laws which have similar state-space
realizations

) g = Arxxk + By

K { u :CKxK+DK3/ (2>
on a Hilbert space Z,, with input space Y ~ R and output space U ~ RP, so that we
can put G and K € % in lower feedback Fy(G, K) as in Figure 1. Candidate controllers
K € % have to stabilize F;(G, K) internally in closed loop, by which we mean that
the infinitesimal generator of the closed loop system generates an exponentially stable
semi-group [15, 9.



K

Figure 1: Lower feedback interconnection (P, K) with H.-performance channel w — 2.

In H..-control one has not only to assure stability in closed loop, but also to guarantee
good performance and robustness of the feedback system. For that purpose the system
G is embedded in a plant P with a similar state-space realization

T = Az + Blw + BQU
P z = Cll' + Duw + D12U (3)
y = Cox + Dyyw + Dogu

where the channel y — u is used for control, the channel w — z for performance. Closing
the u-y-loop in (3) with (2) as in Figure 1 leaves us with the closed-loop transfer function
T (K) from exogenous input w to regulated output z. The H.-control problem consists
now in minimizing the L2-L2-operator norm of T,,.(K) over a suitable class K € ¢ of
admissible control laws. This operator norm is also known as the H.,-norm, given as

||Twz(K)||OO = max E(Twz(Kajw))v (4)

w€e[0,00]

where (M) denotes the maximum singular value of a matrix M. If candidate controllers
K € % in (2) are parametrized as K (x) for a finite-dimensional vector x € R™ of tunable
parameters, then this H,,-optimization program takes the form

minimize [ (x) = II%aX}E(Twz<K<X>7jw>>
we|0,00

subject to K (x) stabilizes G in closed-loop (5)
x ¢ R"

For finite-dimensional real-rational P, K(x) the objective (4) may be computed by an
iterative procedure [6, 5|, but for infinite dimensional G, K (x), this is no longer possible,
and we need to approximate (4) on a finite grid Qqpe C [0, 00]. Introducing the discretized
version

[Tz (K)o, = max 7 (T (K, jw))

WEQopt

of the Hy-norm on the grid 2, this leads to the discretized H-optimization program

minimize f(x) = max 0 (Tyw.(K(x), jw))
wellopt

subject to K (x) stabilizes G in closed-loop (6)
x e R"

to which our non-smooth optimization method is applied. The overall procedure for
H.-control is now given in algorithm 1.



Algorithm 1. Infinite-dimensional H..-synthesis

Parameters: Tolerance ¥ > 0.

> Step 1 (Steady-state). Compute steady-state and linearize infinite-dimensional
system about steady-state.
> Step 2 (Transfer function). Use linearized infinite-dimensional system to compute

transfer function G(jw), either formally for arbitrary w € [0, 00|, or numerically at a
very high precision on a very fine grid Qge.

> Step 3 (Plant). Set up plant P which defines the H.-performance channel w — z.

> Step 4 (Grid for optimization). Find initially stabilizing K (xq) for G and use it
to compute grid for optimization Qo such that ||, (K (X0))|lec < f(x%0) + 9. Either
use a formal or a numerical function G(jw), or extract €2, from the pre-computed
high precision grid Qgpe.

> Step 5 (Non-smooth optimization). Use non-smooth trust-region algorithm 2 to
compute locally optimal solution K (x*) of (6).

> Step 6 (Refined grid). Check whether ||T,. (K (x*))|loo < |Tw:(K(x*))|lco.a + 0. If
not then add nodes to 2., and go back to step 5.

Remark 1. It should be stressed that the computation of G(jw) in steps 1 and 2 of
algorithm 1 is the only moment where the full infinite-dimensional, or likewise, large-scale
finite-dimensional model is used. Since this step is performed prior to optimization, and
typically [Qopt| < |Qfine|, optimization is speedy. Also, the process of finding the correct
P, which needs going back to step 3 of algorithm 1, is not slowed down by steps 1 and
2. In other words, once the transfer function G(jw) is available, the complexity of the
process is the same as that of a finite-dimensional structured H,-design procedure in the
sense of [1, 7|. This will be illustrated in our experimental section.

We now address the individual steps of algorithm 1. The central ingredient is opti-
mization, which is needed to solve (6), and which is discussed in the next sections 3 and
4. Generation of the grid O,y in step 4, and the certificate in step 6, are discussed in
section 5.

3 Non-smooth trust-region method

We work with the non-smooth trust-region method introduced in [4], which has already
been successfully used in mechanical contact problems [10], and in system theory [4]
for computing the worst-case H..-performance of a system, its stability margin, and its
distance to instability. Here we use it for H.,-control of infinite-dimensional systems.
We also answer a question left open in [4, Remark 16|, which concerns the theoretical
justification of Kiwiel’s aggregation technique [17] in non-smooth trust-regions. This
question goes back to [25] for the convex trust-region method, but had until now remained
open. Here we give an affirmative answer.

We briefly recall the essentials of the non-smooth trust-region method. For the present
work it is sufficient to apply it to optimization programs of the form

min f(x), (7)

xeR”



where f : R™ — R is locally Lipschitz but non-smooth and non-convex. Following [21], a
function ¢ : R™ x R™ — R is called a model of f if it satisfies the following properties:

(M) (-, x) is convex, ¢(x,x) = f(x), and d1p(x,x) C If(x).
(M) If y, — x, then there exist e, — 07 such that f(yx) < ¢(yx, X) + exllye — x]|.

(M3) If xp — X, yx — y, then limsup,_, . &(yx, xx) < o(y, X).

We may interpret ¢(-,x) as a substitute for the first-order Taylor expansion of f at x.
For convergence theory we need a slightly stronger type of model, which is given by the
following

Definition 1. A first-order model ¢ of f is called strict if it satisfies the following stronger
version of axiom (My):

(Mg) If Xi, yix — X, then there exist e, — 0 such that f(yr) < ¢(yr, Xx) + €xllyr — xx]|-
O

The difference between (M;) and the strict version (]\/4\2) is analogous to the difference be-
tween differentiability and strict differentiability, hence the nomenclature. For additional
information on the model concept see [21, 3, 4].

Remark 2. A typical example of a strict model ¢ is obtained when f is a maximum
eigenvalue function f(x) = \; (F(x)), with F' : R* — S™ a class C''-mapping into the
space of m x m Hermitian matrices. We take ¢(y,x) = A\ (F(x) + F'(x)(y — x)). See
[21, 3.

Definition 2. Let x be the current serious iterate of the trust-region algorithm, z a
trial step. Let g be a subgradient of ¢(-,x) at z. Then the affine function m,(-,x) =
d(z,x) +g' (- — z) is called a cutting plane of f at serious iterate x and trial step z. [J

If z = x, then due to axiom (M) a cutting plane my(+, X) at serious iterate x and trial
step z = x is just a tangent plane to f at x. Since my(x,x) = f(x), including my(-,x)
in the working model ¢ (-, x) at x guarantees exactness ¢(x,x) = f(x) of the working
model at all counters k. We cast this in the following

Definition 3. A cutting plane my(-,x) at serious iterate x and trial step z = x is called
an exactness plane. O

As is standard in bundle and cutting plane algorithms, by storing cutting planes at
unsuccessful trial steps z*, we accumulate information, which we use to build polyhedral
models of f near x. We use the notation ¢y(-,x) for these working models of f formed
by cutting planes, where k£ denotes the counter of the inner loop. Note that ¢, < ¢
by construction of the cutting planes. If in addition a positive semi-definite symmetric
matrix Q(x) > 0 is available as a substitute for the Hessian of f at x, then we call
®p(-,x) = o(-,x) + 3(- —x)"Q(x)(- — x) a second-order working model of f at serious
iterate x.

We are now ready to present the bundle trust-region algorithm. (See algorithm 2 next

page).



Algorithm 2. Non-smooth trust-region algorithm

Parameters: 0 <7y<7<1,0<y<I'<1,0<0<1, M>1,q>0.

> Step 1 (Initialize outer loop). Fix initial iterate x' and memory trust-region
radius R} > 0. Initialize Q; = 0 with [|Q1]| < ¢. Put outer loop counter j = 1.

> Step 2 (Stopping test). At outer loop counter j, stop if x’ is a critical point of
(7). Otherwise go to inner loop.

> Step 3 (Initialize inner loop). Put inner loop counter k£ = 1 and initialize trust-
region radius as Ry = Rg. Build polyhedral first-order working model ¢, (-, x?), where
at least one exactness plane at x’ is included. Possibly enrich by adding recycled
planes from previous steps, or by including anticipated cutting planes. Build second-
order working model @1 (-, x7) = ¢1(-,x%) + (- —x7) T Q;(- — x7).
> Step 4 (Trial step generation). At inner loop counter k& compute solution y* of
trust-region tangent program
minimize Py (y, x’)
subject to |y — x’|| < Ry,
Then admit any z* satisfying ||z* — x/|| < M|ly* — x’|| and f(x/) — ®x(z*, x7) >
0 (f(x7) — ®x(y*,x7)) as trial step.

> Step 5 (Acceptance test). If

f(x) — f(z")
f(x7) — p(2F, x7)

Pr =

put x7t! = z* (serious step), quit inner loop and goto step 8. Otherwise (null step),
continue inner loop with step 6.

> Step 6 (Update working model). Generate a cutting plane my(-,x’7) of f at the
unsuccessful trial step z* and add it to the polyhedral model. Possibly taper out ¢y,
by removing some of the older cuts, and build new first-order working ¢ 1(,x7).
Then @1 (-, x7) = Gp1 (-, x7) 4+ 3(- —x7) TQ;(- —x7) is the new second-order working
model. Continue with step 7.

> Step 7 (Update trust-region radius). Compute secondary control parameter

~ f(Xj) - ¢k+1(zk,Xj)
f(x7) — ®p(2F,x7)

and put
k41 = oo~ ~
! SRe if pp>7
Increase inner loop counter k£ and go back to step 4.

> Step 8 (Update memory radius). Store new memory trust-region radius

+1 =

#
k; 2Ry, if pp >T

J

Update Q); — Q;+1 respecting Q;4+1 = 0 and ||Q;41|| < ¢. Increase outer loop counter
j and go back to step 2.




Remark 3. Before we discuss convergence of algorithm 2 in the next section, we recall
the form of the tangent program in step 4 from [4]. Let the first-order working model at
inner loop counter k have the form ¢y (-, x7) = max;ey, a; + g, (- — x7) for some finite set
I}, and suppose the trust-region norm is the maximum norm. Then the tangent program
at serious iterate x’ and inner loop instant k is the following CQP

minimize ¢+ 5(y — x7)"Q;(y — x)
subject to a; + g/ (y —x7) <t, i€ L (8)

with decision variable (t,y) € R x R, giving rise to the solution y* in step 4.

4 Convergence

In this section we prove convergence of the trust-region algorithm 2 toward a Clarke
critical point. As is standard, we start by proving that the inner loop ends finitely if
0 € Of(x?), where throughout df denotes the Clarke subdifferential. During this part of
the proof we write x = x? and ) = @), as those are fixed during the inner loop at counter
j. Note that by the necessary optimality condition for the tangent program in step 4 of
algorithm 2, there exists a subgradient g; € 9;¢y(y*, x) such that g; +Q(y* —x)+vy = 0,
where vy, is in the normal cone to the trust-region norm ball B(x, R;) at y*.

Definition 4. We call g; the aggregate subgradient. The affine function mj(-,x) =
or(y",x) + g; T (- — y*) is called the aggregate plane. O

Lemma 1. There exists o > 0 depending only on the constants 6 € (0,1) and M > 0 in
the algorithm and on the trust-region norm || - ||, such that for every trial point z* at inner
loop instant k with corresponding solution y* of the trust-region tangent program in step
4, and for the corresponding aggregate subgradient g € 016(y*,x), we have the estimate

f(x) = on(2",x) > ollgi + Qy* — x)|ll|z" — x]. (9)

Proof: This is essentially the same as [4, Lemma 1]. O

Lemma 2. Suppose the inner loop at x turns infinitely, and liminfy ., Ry = 0. Then x
is a critical point of (7).

Proof: According to step 7 of the algorithm we have p, > 7 for infinitely many £ € K.
Since R}, is never increased during the inner loop, that implies R, — 0. Hence y*,z" — x
as k — oo, where we use the trial step generation rule of step 4 of algorithm 2. We argue
that this implies ¢ (2%, x) — f(x).

Indeed, limsup,, ... ¢r(z",x) < limsup,_,. ¢(z*,x) = limy_,o ¢(2*,x) = f(x) is al-
ways true due to ¢, < ¢ and axiom (M;). On the other hand, ¢y includes (i.e. domi-
nates) an exactness plane mg(-,x) = f(x) + g4 (- — x), hence f(x) = limy_o, mo(z*,x) <
liminf ¢y (z*,x). The two together show ¢(z*,x) — f(x), and then immediately also
®,.(z", x) — f(x). We also readily obtain ¢ (y*,x) — f(x) from the link between z*, y*
in step 4 of algorithm 2.

We now prove that liminfy_, ||gf|| = 0. Assume on the contrary that ||g;|| > n >0
for all k. Choose k large enough to have ||g; + Q(y* — x)|| > %||gi[. This is possible
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because the sequence g; is bounded away from 0 and Q(y"*—x) — 0. Then by estimate (9)
we have f(x)— ¢y (2", x) > Son|z" —x||. Therefore, for k large enough, f(x)—®;(z*,x) >
Ton||z¥ — x||, as the quadratic term in @, is of the order [|z* — x||?. Since z* — x, by
axiom (M) there exist ¢ — 07 such that f(z*) —¢(z",x) < €;|z" —x||. Now we estimate

£(2) — (2, ) &z — x|
) — (2 x) = T Tl — x|

Pr = P+ = pi. + 4ex /(o).
Since €, — 0 and py < v, we have limsup p,, < v < 7, a contradiction with pp > 7 for the
infinitely many k& € K. That proves g; — 0 for a subsequence k € N.

Next observe that by the subgradient inequality and ¢, < ¢ we have

gZTh S ¢k(yk + h,X) - ¢k(yk7X) S ¢(yk + h7 X) - qbk(yk?X)'

Since ¢ (y"*,x) — f(x) = ¢(x,x), passing to the limit ¥ € N and using g; — 0, y* — x
implies

0 < ¢(x + h,x) — ¢(x, x).

Since h was arbitrary, we have 0 € 01¢(x,x) C df(x) by (M;). That proves the Lemma.
U

This result needs only the fact that ¢, < ¢, so it is not in conflict with any rule in
step 6 used to taper out ¢, — @i, as long as some exactness plane is present in ¢y, at all
inner loop instants k. In the next two lemmas we examine the more involved case when
Ry, is bounded away from 0. Here we require not only that an exactness plane is present
at all times, but also that the latest cutting plane is added into ¢g..

However, this leads to a tangent program of size growing with k, which raises the
question whether it is in principle possible to limit the number of planes included in the
working model ¢ (-, x) in step 6. For the convex bundle method this question is answered
in the affirmative by Kiwiel’s aggregation rule [17], according to which only three planes
are required, an exactness plane, the latest cut, and the aggregate plane to account for
the past. For the non-convex bundle method, an affirmative answer was first given in [21].
The aggregate plane is a convex combination of active cuts at the trial point y*, and can
be described as follows. Had we removed from the last tangent program all active planes,
and substituted instead the aggregate plane, the solution y* would have been the same.
The idea of the aggregation technique is to add the aggregate plane into the working
model after an unsuccessful trial step y*, which allows to remove the active planes for the
next sweep. Inactive planes may leave the model in any case.

Remark 4. Ruszezyniski [25] stresses that the situation is more delicate for the convex
non-smooth trust region method, and asks whether convergence could be proved under
the aggregation rule, or under any other rule allowing to limit the number of planes
included in the ¢. Here we address this question in the general non-convex case. In [4]
we had shown that the number of cuts in step 6 may at least be limited to n + 2 using
Carathéodory’s theorem, but we remarked that it would be far more attractive to have
a maximum number independent of the dimension n as in Kiwiel’s rule. In [4, Remark
16] we observed that the question whether Kiwiel’s rule could also be justified for the
trust-region method was still open. Here we shall answer this question in the affirmative
by proving convergence under the aggregation rule.



The following result justifies the use of aggregation in the first place for the special
case z*¥ = y*. Note that the trivial choice z* = y* in step 4 is always authorized (due to
M > 1 and 6 < 1), but of course we want to use the additional freedom offered by zF to
improve performance of our method, so z¥ = y* is rather restrictive, and we will remove
it later.

Lemma 3. Suppose the inner loop at x turns infinitely and the trust-region radius Ry
stays bounded away from 0. Let QQ > 0 and suppose the aggregation rule is used to taper
out the models in step 6. Suppose the y* are chosen as trial steps. Then x is a critical

point of (7).

Proof: Since the trust-region radius is frozen Ry = Ry, from some counter ky onwards,
we write R := Ry,. According to step 7 of the algorithm that means p, < 7 for k > k.
The only progress in the working model as we update ¢ — ¢p1 is now the addition of
the cutting plane and the aggregate plane. The working models ¢, now contain at least
three planes, an exactness plane, the latest cut from the last unsuccessful trial step, and
the aggregate plane. The may at leisure contain more planes, but those won’t be used in
our argument below.

We want to prove y* — x. Since R, stays bounded away from 0, this is more involved
than in the previous Lemma. Since ) > 0 is fixed, we introduce the Euclidian norm
x[3 = x"Qx. With this arrangement the objective function of the tangent program
becomes

u(,%) = Bl %) + 1] - —x P,

We know that the cutting plane my(-,x) at trial step y* satisfies my(y*, x) = ¢(y*, x), so
it memorizes the value ¢(y*, x), while the aggregate plane mj(-,x) satisfies mj}(y*, x) =
¢r(y*,x), so it memorizes in turn the value ¢, (y*,x). The latter gives

Cr(y", x) = mi(y", x) + gly" —x[5. (10)
Now we introduce the quadratic function
C5 (%) = mi (- x) + 3| - —x[3,
then from what we have just seen in (10)
Pi(y",x) = Duly", x). (11)

Moreover, we have
qDZ('7X) S q)k-l-l('uX)’ (12)

because according to the aggregation rule we include the aggregate plane mj(-,x) in the
built of the new model ¢y, that is, we have mj(-,x) < ¢p41(-, %), and hence (12).
Expanding the quadratic function ®(-,x) at y* gives

i, x) = Qh(y" %) + VO, %) (- = ¥") + 3 - =¥,

where Vi = g7 + Q(y" — x). From the optimality condition of the tangent program at
y* we get g; + Q(y* — x) = —v; with vy, in the normal cone to the ball B(x, R) at y*,
hence

(%) = O(y", %) — v (- —¥") + 51—y (13)



Now we argue as follows:

Or(y", x) = C(y", x) (by (11))
< Op(y" %) + gy - vHG
= Qi (y"hx) + v (v =y (by (13))
< Oy x) (since v} (y*™1 —y*) <0) (14)
< Py (yx) (by (12))
< Dppq(x,x) (y"™! minimizer of ®,;(-,x))
= ¢(x,x) = f(x).

Therefore the sequence ®,(y*,x) is increasing and bounded above and converges to a
limit ®* < f(x). Going back with this information to the estimation chain (14) shows
Sly"t — y*E — 0 and also v (y**! — y*) — 0. Then also

sy = x[g = lyt x4 =0,

because | - |g is a Euclidian norm. In consequence

D1 (Y, %) = du(y", x) = Ppa (", x) — Op(y", x) — Sly*H! - X3+ 3ly* —x[3 = 0.

Now recall that the cutting plane my(-,x) is an affine support function of ¢y41(-,x) at
y*. Hence by the subgradient inequality

gi;r( - yk) < Prya(,x) — ¢k+1(ykax)‘

Since ¢4 1(y*, x) = ¢(y*, x), we deduce

¢(yk7x) + glj( - yk) < ¢k+1<'7x)' (15>

Now using (15) we estimate as follows:

0 < ¢(yk7X) - ¢k(yk7x)
=o(y",x) + g0 (Y —y") — d(y* %) — gp (YT = yF)
< G (Y x) — dr(y %) — gr (VT —y").

Since y*** — y* — 0 and the g; are bounded, we have g/ (y**! — y*) — 0, hence we

deduce ¢(y*,x) — ¢r(y*,x) — 0, and also ®(y*, x) — ®p(y*, x) — 0.

Now we claim that ¢ (y*, x) — f(x). Since ¢p(y*,x) < ®p(y*, x) — &* < f(x),
it remains to prove liminf ¢y (y*,x) > f(x). Suppose that this is not the case, and
let ¢p(y®,x) — f(x) —n for a subsequence and some 1 > 0. Then also ¢(y*, x) —
f(x) — n for that subsequence. (Here we use that the sequence y* is bounded, and that
dp(y*, x) — é(y*,x) — 0 proved above). Passing to yet another subsequence, assume
51y —x[3 = £>0. Choose § > 0 such that 6 < (1 —7)n. From what we have just seen
there exists k; such that

o(y*,x) — del(y", x) <6
for all k > k;. Now recall that pp <7 for k > kg, hence

:? ((I)k(yk,x) - f(X)) < ¢(yk7x) - f(X) < qbk(ykvx) - f(X) + 4.
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Passing to the limit gives —yn +7¢ < —n+ 4, hence (1 —7)n + ¢y < 0, which contradicts
the choice of §. Hence ¢y (y*,x) — f(x). We immediately deduce that ®,(y*,x) — f(x)
and ®(y*, x) — f(x).

We now argue that y* — x. This follows from the estimates

Gr(y", %) < Pu(y*.x) = or(y* %) + 3 ly* —x[ < 2 < f(x)

because ¢ (y*,x) — f(x) now shows that all terms go to f(x), and that implies |y* —
x|g — 0. Since Q = 0 we deduce y* — x, and this is where the proof no longer works if
only @ = 0. Note that this shows that y* is in the interior of B(x, R) from some counter
onward, so that vy = 0.

Let us now show that 0 € 0f(x). From the subgradient inequality we have

gZT(X +h - yk) < ¢k(X + ha X) - ¢k(yk7 X) < ¢<X + h7 X) - ¢k(yk7 X)'
Passing to the limit using g; — 0, ¢x(y"*,x) = f(x) = ¢(x,x), we obtain
0 S ¢(X + ha X) - ¢(X7 X)a

and since h is arbitrary and ¢(-, x) is convex, this gives 0 € d1¢(x,x) C I f(x). O

Remark 5. For the general case ) = 0 and z* different from y* it is still not known
whether aggregation is justified, but with [4, Lemma 2| we can prove convergence if we
keep all cuts in the model, or if we use the Carathéodory type argument of that reference
to limit the number of cutting planes in the inner loop to < n + 2.

Remark 6. Note that () > 0 is not a restriction in practice, but z* = y* is. Fortunately
the aggregation technique may still be justified in the case z¥ # y* if we proceed as
follows. In the first place we allow z* as a trial points in step 4. If acceptance fails,
then we perform step 7. However, if step 7 gives no reduction of Ry, then we are in the
difficult case. We then do the following. We fall back on y* as the trial point, i.c., we
forget about z¥. When y* is not accepted, we proceed with step 6 and apply aggregation.
This is now justified because we are in the situation covered by Lemma 3. Note that the
additional work required in steps 6 and 7 is marginal, so we do not waste time by this
evasive maneuver. We could even perform this maneuver as default (i.e. checking y* if
z" fails). We have proved the following

Lemma 4. Suppose the inner loop turns infinitely. Suppose (Q > 0 and that the aggrega-
tion rule is used in step 6 to limit the size of ¢ to any pre-defined fixed number N > 3.
Suppose we accept to fall back on y* if z* fails in step 5 with p, < 7 in step 7. Then
0 € df(x). O

Remark 7. In the classical trust-region method failure of the trial step always leads to
reduction of the trust-region radius. One occasionally sees non-smooth versions where
authors do the same. As we have already shown in [4, section 5.5], that must fail. The
example in that reference also shows that the Cauchy point fails in the non-smooth case.

We are now ready to state the main convergence result for our optimization method.
The proof may be adapted from [4] with minor changes, so we skip it here.

Theorem 1. Suppose x' is such that the level set {x € R™ : f(x) < f(x!)} is bounded.
Let X7 be the sequence of serious iterates generated by the bundle trust-region algorithm.
Then every accumulation point x* of the x? is a critical point of (7). U
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5 The case of H,-synthesis

The general purpose algorithm 2 is readily applicable to the H..-design problem (6), as
this is a special case of (7). Since f is the square-root of a maximum eigenvalue function,
the ideal model ¢ in algorithm 2 is chosen as in remark 2. There are, however, some
particularities in the application of algorithm 2 to (6), on which we comment in this
section.

5.1 Stability barrier

The hidden constraint of closed-loop stability may occasionally lead to unacceptable trial
points y*, but this can be avoided by complementing the objective in (6) by the following
barrier function: We put f(x) = max{||Tw: (K (x))]|s0.a; || S(K (X)) |lco.a}, Wwhere S = (I +
GK)™! is the closed-loop sensitivity function, and ¢ > 0 a small constant. It is well-known
that ||S||5}, also known as the modulus margin, is an indicator for the distance of the
Nyquist curve to the point —1, and since the Nyquist curve crosses —1 when iterates
become destabilizing, the term ||S]|« becomes large as iterates approach the limit of the
region of stability. In other words, ¢||S|l« has the effect of a barrier function at the
boundary of the hidden constraint. Note that the maximum of two H.,-norms is again a
H-norm, i.e., we may still represent the modified objective as f(x) = || Ty »(K)||c0,a for
a modified channel w" — 2/.

5.2 Exploiting freedom in steps 3 and 4

An important practical aspect of program (6) is to use an adapted initialization of the
model ¢4 (-, x) at the beginning of the inner loop, the idea being that in the vast majority
of cases the first trial step will then be successful. This is achieved by including not only
active frequencies w from T, (K (x), jw) at x in the model, but also branches belonging to
secondary peaks, which are susceptible to become active at the next trial step. Selecting
near active frequencies of the H.,-norm is decisive for the quality of the working models
¢r and was already discussed in [1] and [3] in the context of the bundle method, and this
is shown schematically in Figure 2. We refer to this type of affine functions as anticipated
cutting planes, and their integration into the working models is covered by convergence
theory as long as they are affine minorants of ¢.

Bode Diagram

Magnitude (dB)

102 10" 10° 10" 102 10° extended set
Frequency (rad/s)

Figure 2: Left: grid Qqpt based on the criterion (16). Right: selection of extended set of
frequencies around active frequencies with primary and secondary peaks.
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Remark 8. We next exploit the freedom in step 4 of algorithm 2 in the case of program
(6). In case of failure of the solution y* of the tangent program it is attractive to use a
backtracking linesearch to generate trial steps of the form z*¥ = x +#(y* —x), 0 <t < 1.
By convexity, ®4(x,x) — @p(x + t(y* — x),x) > t (P1(x,x) — P4(y*, x)), hence every z*
with ¢ > 6 gives automatically a trial point in the sense of step 4, and we only have to
check acceptance pp > 7. Even for smaller steps ¢ < 6 it may still be possible to have
f(x7) — @y (2¥F,x7) > 0 (f(x7) — ®x(y*,x7)), in which case z* remains a candidate.

5.3 Performance certificate

The strategy in algorithm 1 is to perform discretization at the level of the system transfer
function G(s), and not before, avoiding system reduction or identification. To justify this
we have to select a discretization (., for optimization (6) such that the optimal value
F(x*) = || Tws (K (x*))]|0o,a is nOt too far from the true infinite-dimensional value foo(x*) =
| T (K (x*))||co- This hinges on a suitable grid generation technique. This is crucial in
our approach, but we stress that this takes place in a low-dimensional space, whereas
system reduction and identification need heavy large scale linear algebra machinery, and
yet remain on the level of heuristics.

Given a continuously differentiable function ¢ : [0, 00] — R,, we want to construct a
finite grid Qqpe such that max,ejo o) [¢(w) — Py(w)| < o for a fixed tolerance ¥, where P, is
the piecewise linear function interpolating {¢(w) : w € Qopt }. We call M-, -] a first-order
bound of ¢ : R — R if |¢/(w)| < M[w™,w™] for all v~ < w’ and all w € [w™,w™].

Lemma 5. Suppose we have constructed a grid Q on [0, 00] such that for two consecutive
nodes w;,wiy1 € 0 and some v* > max{¢(w;), p(wit1)} the inequality

Mlwi, wit1)(wit1 — wi) < 29" + 20 — d(wi) — dwiy1)- (16)
is satisfied. Then ¢(w) < v* + 9 for every w € [w;, wit1].

Proof: Suppose on the contrary that there exists w* € [w;, w;11] such that ¢(w*) > v*+4.
Then the polygon through ¢(w;), ¢(w*), ¢(wis1) has length > L, where

L= VB (@ —w) + VB + (w1 — )

with A ="+ 9 — ¢(w;) and B = v* + 9 — ¢(wi11). Now L > {, where

¢:= min ] VA2 + (w—w)? 4+ /B2 + (wig1 —w)2 = V(A + B)? + (wip1 — w;)?,

WE[wi,wit1

. . . . wiB (973 A .
the minimum being attained at w = %. On the other hand the curve {(w, ¢(w)) :

w € [wi,win]} has length £ = [* /14 ¢/ (w)2dw < /14 Mw;,win]?(wis1 — wi),
and . > L, so in combining the two estimates we get .Z > ¢, which yields the estimate
V14 Mwi,wi1]? > /(A + B)?/(wiy1 — w;i)? + 1, and this contradicts (16). O

We would now like to apply this to the function ¢(w) =7 (T3, (K*, jw)), where K* =
K (x*) is the optimal H-controller computed by algorithm 2. For that we have to prove
differentiability of ¢. We have the following

Lemma 6. [5, Theorem 2.3| ¢ has only a finite number of points of non-smoothness, and
in particular, is of class C? in the neighborhood of primary and secondary peaks.
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Proof: By [16, Thm. 6.1] the one-parameter family of Hermitian matrices w — 7 (w) =
T (K*, jw)HT,.(K*, jw) has real analytic eigenvalue functions \,(w), hence ¢?(w) is a
finite maximum of real analytic functions, and then also ¢ because ¢ > 0. The rest of the
argument is now as in [5]. O

In consequence, ¢ is twice continuously differentiable in a neighborhood of each peak,
and in particular on a set {w € [0,00] : (w) > || Tow:(K*)||0oc — Yo} for some ¥y > 0. This
means Lemma 5 is applicable and gives the following:

Theorem 2. If 0 < ¥ < 9y and if a first-order bound M][-, ] for ¢ = 7 (T,.(K*,")) is
used in step 4 of algorithm 1 to construct Qop, then the gain +v* achieved by the solution
K* of (6) is certified to satisfy v* > ||Tw.(K*)||oc — 0. O

We now construct the grid 2., used in (6) as follows: Start with wy = 0. Having
constructed w;, compute an extrapolation wf > w; and obtain M = max{M|w;,w] : w €

[wi,w!]}. Then choose w; 1 € (w;,w!] such that

M (wisr — wi) < 2max{p(w;), p(wit1)} + 20 — d(w;) — G(wis1)- (17)

Then loop on. If G(s) is available analytically, then M-, -] is computable. In the numerical
approach we use a finite difference estimation ¢/(w) =~ (¢p(w™) —d(w))/(wT —w). Since ¢ is
continuously differentiable near the peak values, this gives excellent results. The method
rarely leads to grids with more than a few hundred of nodes, which allows an efficient
solution of the optimization program. A typical example is shown in Figure 2.

Remark 9. In rule (17) we apply (16) with v* = max{¢(w;), ¢(wi+1)} on each interval
[wi, wit1]. When it comes to just certifying the optimal value f(x*) = || Ty (K (x*))|loc =
¢(w*) in step 6 of algorithm 1, then we can construct an even coarser grid by applying
(16) with v* = ¢(w*) the same for all [w;, w;41]. Namely, here our grid can be very coarse
at frequencies w where ¢(w) < ¢(w*), and still capture sharp peaks, as illustrated in
Figure 2. We refer to this as a verification grid 2. The outlined method to construct
Qopt is well-adapted to discretize the controller design problem.

We can further exploit Lemma 5 to obtain information on how close the values ~*
of (6) and 7. of the infinite-dimensional program (5) are. Writing as before f(x) =
| Tz (K (x))]|00,a for the discrete Ho-norm on Qgpe, and foo(x) = || (K (X))||oo for the
true H.,-norm, we compare the discretized H.-program miny f(x), i.e., (6), to the un-
derlying infinite-dimensional miny f(x), i.e. (5).

Corollary 1. Let x, be a local minimum of (5) with value v, and xX* a local minimum
of (6) with value v*. Suppose a first-order bound in tandem with rule (17) has been used
in step 6 of algorithm 1. Then if X*, Xo, are within neighborhoods of local optimality of
each other, we have f(Xoo) > f(X*) > foo(X*) =¥ > foo(Xoo) — U > f(x00) — V.

Proof: Indeed, f(x) > f(x*) because x* is a minimum of f on a neighborhood U (x*),
and X, € U(x*) by hypothesis. Next f(x*) > f.(x*) —¢ by Lemma 5, because construc-
tion of the grid uses the bound M-, -] and rule (16). Next foo(X*) > foo(Xoo), because Xo
is a minimum of f,, on a neighborhood U(x), and x* € U(x+) by hypothesis. The last
inequality is satisfied because f < f. U
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This means comparable locally optimal values of the infinite dimensional H..-program
(5) and its approximation (6) differ by at most ¥, our apriori chosen tolerance. Since most
of the time our algorithm finds the global minimum of (6), this is a very useful result in
practice, as it determines the value of the infinite dimensional H..-program (5) within a
prior tolerance 1.

The argument remains valid if x.,, Xx* are only approximate local minima, say up
to the same tolerance ¥ in the values. Then we get the chain f(x.) > f(x*) — 3 >
foo(X*) = 20 > foo(Xoo) — 30 > f(Xe) — 30, so here our approximation (6) gives the
correct value up to an error of 3¢ in the values.

6 Applications

In this section we apply our method to several challenging studies in control of infinite
dimensional system, and in particular, to boundary and distributed control of systems of
parabolic partial differential equations.

6.1 Computation of G(s) in boundary control

We illustrate how our procedure is applied to boundary control of parabolic PDEs. Con-
sider a boundary problem of the form

a(@t)= Y (-1)*'D*aap(x)D’2)(z, ) =0  (2,t) € Q x [0,00)
lal,|Bl<m (18)

D7tz (x,t) = Uy(x,t) r€NQ,i=1,...,m,

where U; are abstract controls acting on the boundary 0@). Here for convenience () is
bounded open with 9@ a compact orientable C'*°-manifold, the coefficients are a, 3 €
C*(Q), and uniform ellipticity D lal,|8l<m ap(2)E4EP > c|€]? is assumed for z € ). Then
by [27] problem (18) may be represented in the abstract form (1), where however the
input space U is potentially still infinite dimensional. To comply with our assumption
that K (s) should be finite-rank, i.e., that input and output spaces U, Y should be finite-
dimensional, we select basis functions ¢;; on the boundary d¢) and replace the boundary
control action U in (18) by a finite-dimensional version

Di_lz(mat) - Z¢kl(x)ulk(t)7 YIS aQa 1= ]-7 sy,

which now has input space U ~ R¥™. A finite-dimensional output space Y ~ RP? is
obtained e.g. by taking measurements of the form

ilt) = /Q Giw)a(o,tyde, i=1,...p,

with another set of basis functions 1); on €2 representing sensors. For one-dimensional @)
point evaluations on () are possible. This case will be used in our numerical experiments.

Referring to [27, 9, 28| for the correct setup of (1), we directly pass to the computation
of G(s). Laplace transforming (18) with initial condition z(z,0) = 0 leads for fixed s € C
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to the elliptic boundary value problem

sz(xz,s) = Z (=D D*(aps(x)DP2)(x,5) = 0 reQ
laf,|B]<m

N (19)
D tz(x,s) = Zgb;m(x)um(t) r€edQ,i=1,...,m.
k=1

Then Gy, (s) is obtained by solving (19) with w;, = 1 uy = 0 for (¢, k") # (i, k), and
by computing y,(s) = fQ Yr(x)z(x, jw) dz. For the one-dimensional case @ = [0, 1], point
evaluations y,.(s) = 2.(0,s), y-(s) = z.(1, s), or linear combinations of those, are possible.

Remark 10. Computation of G’(s) can also be obtained by solving an elliptic boundary
value problem, which is (19) differentiated with respect to s. Since K is known explicitly,
this is useful when computing the bound M|, ] of ¢ in Lemma 5.

Remark 11. In those cases where computations are not performed formally, a high
spatial resolution is used to solve (19) accurately. One such solve can then be interpreted
as a function evaluation Gy, (s). If carried out numerically, we perform the computation
of G(s) for fixed s = jw with the highest spatial discretization available in our setup.
Typically, this is at least as accurate spatially as our final simulation of the closed-loop
system. Since the number of inputs and outputs is not very large, pre-computing G(s)
will not seriously burden the overall performance of algorithm 1. Since pre-computing
G(jw) is done off-line, it neither impedes the optimization phase, nor the plant modeling
phase.

6.2 Reaction-convection-diffusion equation

We consider a non-linear reaction-convection-diffusion equation with Danckwaerts and
von Neumann boundary conditions

50;?” _ Da2g(j’t) - (t)% _kC(2t) (50 €[0,L] x [0,00)
2 2 (20)
Dw _ U()(C(0,1) — Cin) =0, % _o.

The process represents a chemical reaction in a cylindrical plug flow reactor with time-
varying flow velocity U(t), constant axial dispersion D, and constant reaction rate k. The

dynamics of the reaction A % B are described by the spatially and temporally varying
concentration C(z,t) of reactant A, the concentration of product B being a dependent
state. Using online measurement y(t) = C(L,t)—Css(L) of the concentration of ingredient
A at the outflow position z = L we steer the plug flow velocity U (¢) to maintain the process
in steady-state Uss, Css(2), yss, while attenuating measurement noise and a disturbance
of the flow velocity, and to enable speedy tracking of set-point changes in the steady-state
concentration. We refer to [28] or [9, Example 3.3.5| for the correct setup of this problem
as a Hilbert space linear system (1).

Fixing a steady-state flow velocity Uss, we compute the corresponding steady-state
concentration Css(2) by solving the one-dimensional boundary value problem

DC(2) = UssCiy(2) — kCys(2) = 0

DC;S<0) - Uss(Css(O) - Cin) = 07 C;S(L) = 0. (21)
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Figure 3: Bode plot of infinite-dimensional transfer function G(s) compared with finite-difference based
Gja(s). Left shows study 1 computed with Maple, compared to finite-differences of order N = 1000.
Even with 5000 states the transmission zero at frequency wl.6Hz, which is missed by the discretization
of order N = 1000. Right shows Van de Vusse study with G(s) computed via numerical Maple solve of
(29), compared to finite-differences of order N = 2000.

Linearization about steady-state with U(t) = Uss + u(t) and C(z,t) = Css(2) + ¢(2, 1)
leads now to the linearized boundary and distributed control problem

ci(z,t) = De,,(2,t) — Ugsen(2,t) — Cl(2)u(t) — ke(z,t)

22
Dc,(0,t) — Ussc(0,t) + (Cip, — Cs5(0))u(t) = 0, c.(L,t)=0. (22)
The linearized output is y(t) = ¢(L,t). In this case steady-state Css(z) and transfer
function G(s) = y(s)/u(s) of the linearized equation can be computed formally using
Maple. We obtain

f(l—z/L)—bz/L f(z/L—1)—bz/L
2a

(b—fle —(b+fle =

CSS<Z) = Cm b —7 7
(=bf — 2ak — b?*)ez — (bf — 2ak — b?)esa

(23)

where

D _
a= 75, b= [L]SS, f=Vb2+4ak. (24)

Then the transfer u(s) — ¢(z, s) is obtained analytically as Cj,

Pi(z,3)
Pa(rs)’ where

Pu(s,s) = |2La(s + ) [ ' fi(e)do - LT, | atadds = Tafm - 1) 4
0 0

LT /L fi(z)dx 4 2La(s + k) /1 Folx)dz + Ty(m — 1) | P4
0 0

L . ) _
€T5(Z)LT2 /L f1 (x)dx + €T7(Z)LT6/ f2<l‘)dl‘
1 12

£51 -
PQ(Z, 8) = LTl(TQ(fZ + Tﬁeﬁ)
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with

Ty =/ +4a(s+ k), To=0bT+2a(—k—s)—b> Ts=0T+4a(—k—s)—?
b+ (F DT

b4 (£ - 1)T;
Ty(z) =+ (_L2a ) 1; T5(2) = 2 . Ts = b1 +2a(s + k) + b?,
2h4+ (2 + )T, —2ph+ (2 -1
Th(z) =L (ga ) L Ty =T, +4a(s + k) + b, Ty(z) = —L é’; )T
=Tz (b+Ty)z Css(0)

fi(z) = Css.(2)e 22, fo(2) = Cos.(2)e 21, m= o

The transfer v — y is then obtained at z = L.

Adopting numerical values D = 1.05m?/min, Uy, = 1.24m/min, Cy, = 0.5 mol/m3,
k = 0.25m?/mol, and L = 6.36 m from a study in [13], we can compare the the infinite-
dimensional transfer function G(s) with a finite-difference approximation Gg(s). Figure
3 left shows the comparison of G(s) and Gy(s).

The scheme for synthesis is shown in Figure 4 and uses the filters in Figure 5 (right),
which are defined as

~0.00001s + 5

W (s) 0.00125s% + 0.00035s + 0.00005
L(s) = ) —
s+ 0.25

W, =0.1.
0.000025s2 + 0.007s + 1 ’

Wn(s)

The controller structure .#;,; includes SISO Pl-controllers with two parameters K(s) =
kp + &

K,

lﬁ
®)
9]
Y
S
+
o[
<
Y
@Q
<
\]

O<—| W, [«<—

Figure 4: Scheme for synthesis. The Ho-norm of the performance channel (r,n) — (ze, 2y,) is
minimized, which assures that the system reacts to a set-point change r, and attenuates noise
with bandwidth specified by the filter W,,. Tracking e is in the low-frequency range specified by
We.

Remark 12. The functional analytic setup for (22) is as follows. On the Hilbert space
H = L£*(|0,L]) define the differential operator &/ = D% — Uyt — k with domain
D(#)={h € H:hLhac, %h € L£%*([0,L)])}, and the boundary control operator by
P = (DL - Uy) /(Cys(0)—Cy,) with domain D(P) = {h € H : Lh € L*([0,L]), h a.c.},
so that D(«7) C D(Z). One defines a = (Cs5(0) — Cy,) / (D — Uy /2) and the function
b(z) = $(z + 1), then the multiplication operator Bu = b(z)u satisfies &(Bu) = u, and
now we have a boundary control problem in the sense of |9, Def. 3.3.2], which can be

brought to the form (1).
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Figure 5: Left: Time response to a noisy reference signal of analytic closed loop. Right: Filter
We for synthesis and noise filter W,.

6.3 Van de Vusse reactor

The following more challenging study uses a parallel Van de Vusse process

Al Bl o
A+A2 D

which we want to operate in continuous mode in an isothermal reactor. In [31] Van de
Vusse considers A = cyclopentadiene, B = cyclopentenol, C' = cyclopentanediol, D =
dicyclopentadiene. The desired output product is B, the inlet is the primary product
A, whereas C, D are waste products. The reaction takes place in a steady-plug-flow
cylindrical chemical reactor of length L, through which a fluid with velocity U is flowing,
where ingredients are mixing axially with dispersion coefficient D, while the now non-
linear chemical reaction is described by the rates k;. In ODE-based models the axial
dispersion is often neglected, or replaced by a singular perturbation approach [11]. Here
we discuss the full non-linear model. For the functional analytic setup of the problem see
again [28].

Assuming radially homogeneous conditions in the tube, the system can be described
by one spatial dimension z, and the reaction for ingredients A and B is governed by the
following diffusion-convection-reaction system of parabolic PDEs:

8CA(z,t) 820A(Z,t) GCA(z,t)

- B _ 2
ot =D az2 U 02 kIC’A(z, t) k?gCA(Z, t) (25)
GCB(Z,t) . 8203(2’,t) GC’B(z,t)
e D 5z U 5, T k1Ca(z,t) — k2Cp(2,1)
for (z,t) € [0, L] x [0, 00), with Danckwaerts and von Neumann boundary conditions
D%g—(f’t) U (CA(0,8) — Can) = O, Dwg—gﬂ L UCH(0,8) = 0
OC (L) OC(L,1) (26)
At o, BT
0z 0z

for all ¢ € [0,00). The meaning of these boundary conditions at z = 0 is that as soon as
the feed enters the reactor at z = 0, it will be diluted by the axial mixing caused by the
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flow. At z = L we have Neumann boundary conditions, which simply require that the
concentration stops changing at the point where the flow leaves the reactor.

The goal of the study is to operate the reactor at a steady-state flow U, leading to
a steady outflow Cpgs(L) of product B at the outlet of the reactor. This steady-state
flow has to be controlled by feedback, where we have the possibility to act on the veloc-
ity U(t) = Uss + u(t), and where we use the deviation y(t) = Cp(L,t) — Cpss(L) from
the steady-state production as our online measurement at the outlet. It is assumed that
changes of the axial flow velocity do not affect the axial dilution D assumed constant.
Control has to maintain a stable steady-state, attenuate measurement noise and distur-
bances at the inflow, and enable the system to react to set-point changes in the flow
velocity U.

Our procedure starts by computing the steady-state, which leads to solving the system
of ODEs

DCZ (Z) - USSCASS(Z) - leASS(z) - k30§§ss(2)

=0
SS 27
DCY(2) = UssCaan(t) + F1Cotn(2) — FoClpno(2) = 0 =)
with steady-state boundary conditions
DC’ASS(O) — Uss (CASS(O) - CAin) =0, DCJIBss(O) - USSCBSS(O) =0, (28)

Chss(L) =0, Cp(L) =0.

This defines a mapping Uy — (Cass(L), Cpss(L)), which allows us to see what flow Uk
gives the largest output. In the numerical study we fix Uy = 6.175e-3, which leads to the
solutions in Figure 6.

Remark 13. According to our strategy we assume that Cyuss(2), Cpss(z) are computed
with a very high precision, representing a quasi-analytic solution. Indeed, it is in principle
possible to solve the steady-state system formally using Taylor series expansions, but since
the difference with a high precision numerical solution is marginal, we proceed with the
numerical approach.

Once the steady-state is computed, we linearize the system by putting Cs(z,t) =
Cass(z) + ca(z,t), Cp(z,t) = Cpss(2) + cp(z,t), U(t) = Uss + u(t) with off-sets ca, cp, u,
which leads to the linearized system

dca(z,t)  0%ca(z,t) dca(z,t) 0C 445(2)
5 D 52 Uss 5 (k1 + 2k3Cass(2))ca(z,t) — o u(t)
dcp(z,t)  0%cp(z,1) dcp(z,t) 0Cpss(2)
ot =D 922 — USST + k’lCA(Z, t) — k’QCB<Z,t) — TU(t)
(29)
with left boundary conditions
0
DacA((L t) - USsCA(Oy t) + (CAm - CAss(()))u(t) =0
(30)
D%CB(O,t) — Usscp(0,t) — Cpss(0)u(t) = 0.
and right boundary conditions
aCA(L, t) aCB(L7 t)
St A B . 1
0z 0 0z 0 (31)
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Steady state solution

Concentration (mol/l)

Figure 6: Steady-state flow computed by Maple for Uss = 6.175¢-3. The parameters were
maxmesh=1e6, abserr = le-7. The plots show Cas4(2;), Cpss(2;) for 500 equidistant nodes
on [0, 1].

The measured output is y(t) = cp(L,t). The transfer function G(s) = y(s)/u(s) is in
principle also available analytically, but we continue with the high precision numerics
strategy. We first compute the transfers c4(z, s)/u(s) and cp(z, s)/u(s), which we obtain
by Laplace transforming the linearized system. This leads to the linear boundary value
problem

D(ca).z(z,8) — Uss(ca).(z,8) — (k1 + 2k3Cass(2) — s)ca(z, 8) — (Cass) - (2)u(s)
D(cp)..(z,8) — Uss(cp):(2,8) + k1ca(z,s) — (ko + s)cp(z,8) — (Cpss) - (2)u(s)

0
0

with Laplace transformed boundary conditions

D(ca).(0,5) — Ussca(0,8) + (Cain — Cass(0))u(s) =0,
D(cp).(0,8) — Usscp(0,8) + (Cpin — Cpss(0))u(s) =0
D(ca).(L,s)=0
D(cp).(L,s) =0

Solving this boundary value problem for fixed s = jw with u(s) = 1 gives the value G(jw)
of the transfer function y(s) = cg(L, s) = G(s)u(s). This is in fact the method presented
in section 6.1. The magnitude of G(s) is shown in Figure 7 (right).

Note that for every fixed s = jw we have to solve a static elliptic problem associated
with the dynamic equation (29), and we perform these computations with the finest scale
available, so that G(s) is essentially lossless. In Figure 3 it can be seen that in order
to achieve the accuracy in G(s) with a finite-difference discretization G4(s) we would
requires at least 2000 states. So in state-space we would have to perform synthesis on
a system of order 2000 to be sure that we do not lose information. This size is beyond
existing synthesis techniques. In the same vein, any approach based on system reduction
would run the risk of losing information in forming a transfer function based on a reduced
model.
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H constant \ denomination \ numerical value \ unit H

k1 exchange rate A — B 1.39 x 1072 st
ks exchange rate B — C 2.78 x 1072 st
ks exchange rate A+ A — D 2.77x 107 | 1/mol/s
D axial dispersion coefficient 3.33 x 1074 m?/s
Uss steady-state velocity 6.175 x 1073 m/s
Cain inlet concentration of component A 10.0 mol /1
L length of reactor 1.0 m

The spatiotemporally, spatially, and temporally varying quantities are

H Quantity‘ denomination ‘ unit H

) concentration of reactant A mol/l
Cgp(z,t) concentration of reactant B | mol/l
) | steady-state concentration of A | mol/l
Cpss(z) | steady-state concentration of B | mol/l
Ul(t) superficial velocity m/s

Time responses of discretized non-linear PDE

Amplitude (dB)

Concentration (mol/l)
oo
o

T T
Flow velocity,u(t)

(N

107 107 10° 10’ 10° 10° 10* 0 2 4 6 8 10
f (Hz) Time (s)

Figure 7: Left: Comparison of transfer function magnitude for different positions of the sensor.
The blue curve (z = L) is the one chosen in the experiment. Right: Response of closed-loop
system to a noisy reference for optimal controller computed by algorithm 1.

With the synthesis scheme of Figure 4, and now optimizing over the class #3 of third
order controllers, the optimal H..-controller obtained by algorithm 1 is

—8946 - =36.65 - 0 “832) o —[~1.839 —3.129 —9.019],
A= |-1.324 —5027 —184| By = | 4728, g
Dy = —.08686.
0 822 1214 2.019

The study ends with a non-linear simulation of the optimal controller. In Figure 7 (right)
the response if the nonlinear system to a noisy reference signal is displayed.

22



6.4 Cavity flow

We consider a challenging cavity flow study from [32], where the infinite-dimensional
transfer function is available analytically and of the form

—T18
e 1

) = p2<3) + q2(8)677—2s + Ce*TgS

G(s

with quadratic polynomials ps(s), ¢2(s) and delay parameters 7; > 0. Figure 8 (left) shows
the magnitude plot of GG in blue, indicating a large number of resonant peak frequencies.

MAIN FLOW . W I CONTROL FLOW

s

T
A
ﬁ KULITE TRANSDUCER

COMPRESSION DRIVER

Figure 8: Cavity flow study from [32]|. Left image shows magnitude of G(jw) (blue), and of GS
in closed loop (red).

As H.,-objective we have chosen the channel ||(W1S, WoT)|| with S the closed-loop
sensitivity function, T the complementary sensitivity functions, and with the frequency
weighing filters Wy(s) = (0.01s + 502.5)/(s + 50.25), Wy (s) = (100s 4 500)/(s + 50000).
Optimization (6) is over the class J# of order 2 controllers, which features 5 tunable
parameters. The optimal controller computed by algorithm 1 is K*(s) = (0.718s* +
224.7s + 2642)/(s* + 535.85 + 2.268¢04) and achieves a gain of v* = 5.41, which improves
over the value obtained in [32| using a coprime factorization approach. The final grid size
is [Qope| = 382.

7 Conclusion

We have presented a novel method to compute H..-controllers for infinite dimensional
systems and in particular for boundary and distributed control of PDEs. At the core our
approach uses a non-smooth trust-region bundle algorithm to solve a frequency discretized
version of the infinite-dimensional problem. The method was justified theoretically and
tested numerically on a reaction-convection-diffusion equation, on a Van de Vusse reactor,
and for control of a cavity flow. A convergence certificate for the non-smooth trust-region
algorithm under Kiwiel’s aggregation rule was proved, allowing to limit the number of cuts
in the tangent program (8) to any fixed number N > 3, and answering in the affirmative
a question left open in [4].
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