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Abstract

Optimal power flow (OPF) over power transmission networks poses challenging large-scale nonlinear optimization prob-
lems, which involve a large number of quadratic equality and indefinite quadratic inequality constraints. These compu-
tationally intractable constraints are often expressed by linear constraints plus matrix additional rank-one constraints on
the outer products of the voltage vectors. The existing convex relaxation technique, which drops the difficult rank-one
constraints for tractable computation, cannot yield even a feasible point. We address these computationally difficult
problems by an iterative procedure, which generates a sequence of improved points that converge to a rank-one solution.
Each iteration calls a semi-definite program. Intensive simulations for the OPF problems over networks with a few
thousands of buses are provided to demonstrate the efficiency of our approach. The suboptimal values of the OPF
problems found by our computational procedure turn out to be the global optimal value with computational tolerance
less than 0.01%.

Keywords: Optimal power flow (OPF) problem; large-scale transmission networks; rank-one matrix constraint;
nonsmooth optimization; semi-definite programming (SDP).

1. Introduction

Smart grids are operated by the advanced distribu-
tion management system (DMS), which is responsible for
supervisory control and data acquisition in reactive dis-
patch, voltage regulation, contingency analysis, capability
maximization and other smart operations. The optimal
power flow (OPF) problem, which determines a steady
state operating point that minimizes the cost of electric
power generation or the transmission loss is the back-
bone of DMS (see e.g. [1, 2, 3, 4] and references therein).
Mathematically, the OPF problem is highly nonlinear and
nonconvex due to numerous quadratic equality and indef-
inite quadratic inequality constraints for bus interconnec-
tions, hardware operating capacity and the balance be-
tween power demand and supply. These nonlinear con-
straints are mathematically troublesome so the state-of-
the-art nonlinear optimization solvers may converge to just
stationary points (see [5] and references therein), which
are not necessarily feasible. To handle these nonlinear
constraints, it is common to reformulate them as linear
constraints on the outer product W = V V H of the volt-
age vector V = (V1, V2, ..., Vn)T ∈ Cn. As a result, the
OPF problem is recast by a semi-definite program (SDP)
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plus the additional rank-one constraint on outer product
matrix W [6, 7]. The rank-one constraint is then dropped
for semi-definite relaxation (SDR). However, the optimal
solution of SDR is of rank-more-than-one in general and
cannot help retrieval of a feasible point or stationary point
of the OPF problem [7, 8, 9]. In [10], we have extended the
technique of [11] for solving the beamforming optimiza-
tion problems in signal processing to optimize the outer
product matrix W , which works very well and is practi-
cal for moderate-scale power distribution networks up to
n = 300 buses. There is another approach (see e.g. [12]
and references therein), which is based on hierarchies of
moment-based relaxation for nonconvex quadratic prob-
lems to tackle large networks with simple nonconvex con-
straints.
Power transmission networks in modern smart grids are of-
ten devised with a few thousand buses [13, 14, 15]. Under a
such large number n of buses it is impossible to use the sin-
gle matrix W ∈ Cn×n, which involves n(n+1)/2 ≈ O(107)
complex variables. On the other hand, the number of the
flow lines for bus connection is relatively moderate so only
a small portion of the crossed nonlinear terms VkV

∗
m ap-

pears in the nonlinear constraints. The common approach
is to use the outer products of overlapped groups of the
voltage variables to cover them [16, 17, 9]. All rank-one
constraints on these outer products are then dropped for
SDR. Obviously, the optimal solution of this SDR usu-
ally is not of rank-one and thus does not have any phys-
ical meaning. There is no technique to retrieve a feasi-
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ble rank-one point from the rank-more-than-one solution
of SDR.1 Multiple matrix rank constrained optimization
has received a great attention due to its potential appli-
cation in robust control synthesis [19, 20] but to our best
knowledge there is no effective computation so far. The
contribution of this paper is two-fold:

• An effective decomposition for large-scale OPF prob-
lems, which involves essentially reduced numbers of
the rank-one constraints on matrices of moderate
size for expressing the network nonlinear constraints;

• A new iterative procedure for rank-one constrained
optimization, which is practical for computational
solutions of large-scale indefinite quadratic program-
ming. Simulations for the large-scale OPF problems
show that it is capable of finding the global optimal
solution with the computational tolerance less than
0.01%.

The paper is structured as follows. Section 2 is devoted
to the OPF problem formulation and its difficulties. Its
computational solution is developed in Section 3. Section
4 provides simulation to show the efficiency of our method.
The conclusions are drawn in Section 5.

Notation. j denotes the imaginary unit; M � 0 means
that M is a Hermitian symmetric positive semi-definite
matrix; rank(M) is the rank of the matrix M ; <(·) and =(·)
denote the real and imaginary parts of a complex quantity;
a ≤ b for two complex numbers a and b is componentwise
understood, i.e. <(a) ≤ <(b) and =(a) ≤ =(b); 〈., .〉 is the
dot product of matrices, while diag{Ai} denotes the matrix
with diagonal blocks Ai and zero off-diagonal blocks; the
cardinality of a set L is denoted by |L|.

2. Optimal power flow problem and challenges

Consider an AC electricity transmission network with a
set of n buses N := {1, 2, · · · , n}. The buses are connected
through a set of flow lines L ⊆ N × N , i.e. bus m is
connected to bus k if and only if (m, k) ∈ L. Accordingly,
N (k) := {m ∈ N : (m, k) ∈ L}. The power demanded at
bus k ∈ N is SLk

= PLk
+ jQLk

, where PLk
and QLk

are
the real and reactive power. A subset G ⊆ N of buses is
supposed to be connected to generators. Any bus k ∈ N\G
is thus not connected to generators.

Other physical parameters are following [21, 22, 23]:

• Y = [ykm](k,m)∈N×N ∈ Cn×n is the admittance ma-
trix [23]. Each ykm is the mutual admittance be-
tween bus k and bus m, so ykm = ymk ∀ (k,m) ∈ L.

• V is the complex voltage vector, V = [V1, V2, · · · , Vn]T

∈ Cn, where Vk is the complex voltage injected to
bus k ∈ N .

1There is an algorithm of finding a rank-one solution [18, Alg. 1],
which however is applicable to simple nonconvex constraints and is
not guaranteed to convergence

• I is the complex current vector, I = Y V = [I1, I2, · · ·
In]T ∈ Cn, where Ik is the complex current injected
to bus k ∈ N .

• Ikm is the complex current in the power line (k,m) ∈
L,

∑
m∈N (k)

Ikm = Ik =
∑

m∈N (k)

ykmVm.

• Skm = Pkm+jQkm is the complex power transferred
from bus k to bus m, where Pkm and Qkm represent
the real and reactive transferred power.

• SGk
= PGk

+ jQGk
is the complex power injected by

bus k ∈ G, where PGk
and QGk

represent the real
and reactive generated power.

For each bus k, it is obvious that

SGk
− SLk

= (PGk
− PLk

) + j(QGk
−QLk

)

= VkI
∗
k = Vk

∑
m∈N (k)

V ∗my
∗
km.

Therefore, the real generated power PGk
and reactive gen-

erated power QGk
at bus k are the following nonconvex

quadratic functions of the bus voltage vector variable V :=

(V1, V2, ..., Vn)T ∈ Cn: PGk
= PLk

+ <(
∑

m∈N (k)

VkV
∗
my
∗
km)

and QGk
= QLk

+ =(
∑

m∈N (k)

VkV
∗
my
∗
km).

Bus 1
G

24y35y
45y

12y13y

23y Bus 2Bus 3

Bus 5 Bus 4
G

Figure 1: WB5-Five Bus Network [24]

For illustrative purpose, Figure 1 provides a diagram
of WB5-Five Bus Network [24] with N = {1, 2, 3, 4, 5}.
It is seen from the bus connection in this Figure that
N (1) = {2, 3} because buses 2 and 3 are connected to
bus 1, N (2) = {1, 3, 4}, N (3) = {1, 5}, N (4) = {2, 5} and
N (5) = {3, 4}. Also G = {1, 5} because buses 1 and 5 are
connected to generators.
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The objective of OPF is to minimize either the total
cost of the generated power defined by [22]

f(PG) =
∑
k∈G

(ck2P
2
Gk

+ ck1PGk
+ ck0), (1)

with given ck2 > 0, ck1 and ck0 and real active generated
power PG, or the total transmission losses defined by

Floss(PG) =
∑
k∈G

(PGk
− PLk

)−
∑

k∈N\G

PLk
. (2)

In this paper, we consider only the objective function (1).
It is quite clear that our approach can be adjusted to solve
the objective (2) in a straightforward manner.
Write the objective (1) as the following function of the bus
voltages V :

f(V ) =
∑
k∈G

[ck2(PLk
+ <(

∑
m∈N (k)

VkV
∗
my
∗
km))2

+ck1(PLk
+ <(

∑
m∈N (k)

VkV
∗
my
∗
km)) + ck0]. (3)

Accordingly, the OPF problem is formulated as follows

min
V ∈Cn

f(V ) s.t. (4a)

−PLk
− jQLk

=
∑

m∈N (k)

VkV
∗
my
∗
km, k ∈ N \ G, (4b)

PminGk
≤ PLk

+ <(
∑

m∈N (k)

VkV
∗
my
∗
km) ≤ PmaxGk

, k ∈ G (4c)

QminGk
≤ QLk

+ =(
∑

m∈N (k)

VkV
∗
my
∗
km) ≤ QmaxGk

, k ∈ G (4d)

V mink ≤ |Vk| ≤ V maxk , k ∈ N , (4e)

|Skm| = |VkV ∗my∗km| ≤ Smaxkm ,∀(k,m) ∈ L (4f)

|Vk − Vm| ≤ V maxkm , (k,m) ∈ L, (4g)

|arg(Vk)− arg(Vm)| ≤ θmaxkm , (k,m) ∈ L, (4h)

where (4b) is the equation of the balance between the de-
mand and supply power at bus k ∈ N \ G, (4c)-(4d) are
the power generation bounds with the lower bound PminGk

,

QminGk
and upper bound PmaxGk

, QmaxGk
of the real power re-

active power generations, (4e) are the voltage amplitude
bounds, (4f)-(4h) are capacity limitations with the line
currents between the connected buses constrained by (4f),
while (4g)-(4h) guarantee the voltage balance in terms of
their magnitude and phases [23].
One can see that (4) is a highly nonlinear optimization sub-
ject to nonlinear inequality and equality constraints and
thus poses a real challenge for its computation. A common
approach is to use the slack variables

Wkm = VkV
∗
m, k = 1, ..., n;m = 1, ..., n (5)

and then recast the problem (4) in V ∈ Cn to the following

problem in W = [Wkm]k,m=1,...,n ∈ Cn×n:

min
W∈Cn×n

F (W ) s.t. W � 0, (6a)

−PLk
− jQLk

=
∑

m∈N (k)

Wkmy
∗
km, k ∈ N \ G, (6b)

PminGk
≤ PLk

+ <(
∑

m∈N (k)

Wkmy
∗
km) ≤ PmaxGk

, (6c)

k ∈ G,

QminGk
≤ QLk

+ =(
∑

m∈N (k)

Wkmy
∗
km) ≤ QmaxGk

, (6d)

k ∈ G,
(V mink )2 ≤Wkk ≤ (V maxk )2, k ∈ N , (6e)

|Wkmy
∗
km| ≤ Smaxkm , (k,m) ∈ L, (6f)

Wkk +Wmm −Wkm −Wmk ≤ (V maxkm )2, (6g)

(k,m) ∈ L,
=(Wkm) ≤ <(Wkm) tan θmaxkm , (k,m) ∈ L, (6h)

rank(W ) = 1, (6i)

where F (W ) =
∑
k∈G

[ck2(PLk
+ <(

∑
m∈N (k)

Wkmy
∗
km))2

+ ck1(PLk
+ <(

∑
m∈N (k)

Wkmy
∗
km)) + ck0], which is convex

quadratic in Wkm, while all constraints (6b)-(6h) are lin-
ear. All the problem nonconvexity is now concentrated in
the single rank-one constraint (8b), which is then dropped
for SDR. If the solution of this SDR is of rank-one, then
it obviously leads to the global solution of the nonconvex
optimization problem (6). Otherwise even a feasible point
of (6) is hardly retrieved from the SDR solution. More-
over formulation (6) cannot be practically used for n more
than a few thousands in large-scale networks as it involves
n(n + 1)/2 variables–a prohibitively large number. The
next section will address and resolve all these issues.

3. Nonsmooth optimization based solution

The first issue is to decompose large-size matrix W
in (6) into matrices of smaller size to make the problem
tractable even with limited computational power. This is
also prompted by the fact that there is only a small por-
tion of the crossed terms VkV

∗
m appearing in the nonlinear

constraints (4b)-(4h) so the large-size matrix variable W ∈
Cn×n contains many redundant terms VkV

∗
m. The main re-

sult of [16, 17, 9] is to decompose the set N := {1, 2, ..., n}
of buses into I overlapped subsets Ni = {i1, ..., iNi} of
buses, called bags, such that i` ∈ N (i`+1), ` = 1, ..., Ni −
1 and iNi

∈ N (i1), for each i = 1, 2, ..., I, i.e. the buses
in the same bag are serially connected. The set of bags
can be reset to make bags of relatively same size. Define
the Hermitian symmetric matrix variables

W i = [Wikim ]k,m=1,..,Ni
∈ CNi×Ni , i = 1, 2, ..., I. (7)

3



By replacing Wkm = VkV
∗
m in (6) we have the following

equivalent reformulation for (6)

min
W=diag{W i}

F (W ) s.t. (6b)− (6h), (8a)

W i � 0, i = 1, ..., I, (8b)

rank(W i) = 1, i = 1, ..., I. (8c)

Reference [16, 17] just dropped all rank-one constraints
in (8c) for SDR without any justification. Reference [9]
also dropped all rank-constraints in (8c) but then used a
penalized SDR for locating low-rank semi-definite matrices
W i in (7). Based on these low-rank matrices, [9, Sec. IV]
also proposed to find rank-one matrices, which however
are not necessarily feasible to (8).

The variable number in (8) is
∑I
i=1Ni(Ni+1)/2. To keep

this number reasonably moderate, it is desired that both
I and Ni are sufficiently moderate. However, one can see
that the above described decomposition [16, 17, 9] leads
to a large number I of bags as well as few large size Ni
that result in many rank-one constraints in (8c), which are
much less probably satisfied by solving SDR.

Our first step toward to computation of (4) is to de-
velop a new decomposition with many fewer bags involved.
Recalling that N (k) is the set of the buses that are con-
nected to bus k, the cardinality |N (k)| is small in large-
scale networks. We resort N = {1, 2..., n} as N = {N1, ...,
Nn} such that the cardinality |N (Nk)| is in decreased or-
der:

|N (N1)| ≥ |N (N2)| ≥ ... ≥ |N (Nn)|.

Accordingly, the first bag of buses is defined as N1 =
N (N1). The second bag is defined as

N2 = {i ∈ N (N2) : {i,N2} 6⊂ N1}.

Note that the crossed term ViV
∗
N2

is already treated in the
previous bag N1 whenever {i,N2} ⊂ N1 so we exclude
such bus i in defining bag N2.
Similarly, for ` ≥ 3 the `-th bag is defined as

N` = {i ∈ N (N`) : {i,N`} 6⊂ N`′ ∀1 ≤ `′ ≤ `− 1}

to exclude those buses i, whose crossed term ViV
∗
N`

already
is treated in a previous bag.
As each |Ni| is obviously small, such decomposition is very
efficient, leading to a substantial reduction of involved bags
in comparison with that used in [16, 17, 9].

Our next step is to tackle the numerous difficult rank-
one constraints in (8c), not dropping them for SDR as in
all the previous works.
Firstly we express I rank-one constraints in (8c) by the
following single spectral constraint

I∑
i=1

(Trace(W i)− λmax(W i)) = 0, (9)

where λmax(W i) stands for the maximal eigenvalue ofW (i).

Indeed, (8b) implies Trace(W i)−λmax(W i) ≥ 0 ∀ i, so (9)
means that Trace(W i) = λmax(W i), i.e. W i has only one
nonzero eigenvalue so it is of rank-one. The nonnegative
quantity

∑I
i=1(Trace(W i) − λmax(W i)) can therefore be

used to measure the degree of satisfaction of the rank-
one constraints (9). Without squaring, the penalization∑I
i=1(Trace(W i) − λmax(W i)) is exact, meaning that (9)

can be satisfied by a minimizer of the problem

min
W=diag{W i}

Fµ(W ) := F (W ) + µ

I∑
i=1

(Trace(W i)

−λmax(W i)) s.t. (6b)− (6h), (8b), (10)

with a finite value of µ > 0 (see e.g. [25, Chapter 16]).
This is generally considered as a sufficiently nice property
to make such exact penalization attractive.
For any W i,(κ) feasible for the convex constraints (6b)-
(6h), (8b), function λmax(W i) is nonsmooth and is lower
bounded by

λmax(W i) = max
||w||=1

wHW iw ≥ (wi,(κ)max )HW iwi,(κ)max , (11)

where w
i,(κ)
max is the normalized eigenvector corresponding

to the eigenvalue λmax(W i,(κ)), i.e.

λmax(W i,(κ)) = (wi,(κ)max )HW i,(κ)wi,(κ)max . (12)

Accordingly, µλmax(W i)−µλmax(W i,(κ)) ≥ µ((w
i,(κ)
max )HW i

.w
i,(κ)
max − (w

i,(κ)
max )HW i,(κ)w

i,(κ)
max ) = µ〈wi,(κ)max (w

i,(κ)
max )H ,W i −

W i,(κ)〉, so µw
i,(κ)
max (w

i,(κ)
max )H is a subgradient of the function

µλmax(W i) at W i,(κ). Then µdiag{wi,(κ)max (w
i,(κ)
max )H} is a

subgradient of the function µ
∑I
i=1 λmax(W i) at diag{W i,(κ)}.

The following SDP provides an upper bound for the
nonconvex optimization problem (10)

min
W=diag{W i}

F (κ)(W ) := F (W ) + µ

I∑
i=1

(Trace(W i)

−(wi,(κ)max )HW iwi,(κ)max ) s.t. (6b)− (6h), (8b) (13)

because F (κ)(diag{W i}) ≥ Fµ(diag{W i}) ∀ W i � 0 ac-
cording to (11). Suppose that W (κ+1) = diag{W i,(κ+1)} is
the optimal solution of SDP (13). SinceW (κ) = diag{W i,(κ)}
is also feasible to (13) with Fµ(W (κ)) = F (κ)(W (κ)), it is
true that

Fµ(W (κ+1)) ≤ F (κ)(W (κ+1)) ≤ F (κ)(W (κ)) = Fµ(W (κ)),

so W (κ+1) is a better feasible point of (10) than W (κ). Ini-
tialized by any feasible point W (0) = diag{W i,(0)} of SDP
constraint (8a)-(8b), the sequence {W (κ)} = {diag{W i,(κ)}}
with W (κ+1) = diag{W i,(κ+1)} iteratively generated as the
optimal solution of SDP (13) is a sequence of improved fea-
sible points of the nonconvex optimization problem (10).
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Since W (κ) are uniformly bounded, the sequence {W (κ)}
has a limit point W̄ = diag{W̄ i}, which is the optimal
solution of the optimization problem

min
W=diag{W i}

F (W ) + µ

I∑
i=1

(Trace(W i)

−(w̄imax)HW iw̄imax) s.t. (6b)− (6h), (8b), (14)

where w̄imax is the normalized eigenvector corresponding
to the eigenvalue λmax(W̄ i) of W̄ i. Particularly,

F (W ) + µ

I∑
i=1

(Trace(W i)− (w̄imax)HW iw̄imax) ≥

F (W ) + µ

I∑
i=1

(Trace(W̄ i)− (w̄imax)HW̄ iw̄imax),

or equivalently, under the definition g(W ) = F (W ) +

µ

I∑
i=1

Trace(W i),

g(W )− g(W̄ )− 〈µdiag{w̄imax(w̄imax)H},W − W̄ 〉 ≥ 0

for all feasible points W = diag{W i} in (6b)-(6h), (8b).
As a result, W̄ is the optimal solution of the convex opti-
mization problem

min
W=diag{W i}

g(W )− 〈µdiag{w̄imax(w̄imax)H},W − W̄ 〉

s.t. (6b)− (6h), (8b),

so it must satisfy the optimality condition

〈∇g(W̄ )− µdiag{w̄imax(w̄imax)H},W − W̄ 〉 ≥ 0

for all feasible points diag{W i} in (6b)-(6h), (8b). The
latter is also the first order necessary optimality condition
for (10) because µdiag{w̄imax(w̄imax)H} is a subgradient of

the function µ
∑I
i=1 λmax(W i) at W̄ . As our simulations

will show, W̄ is indeed the global optimal solution of (10)
and (8).

However, unlike [10] with only a single rank-one con-
strained matrix, although quantity

I∑
i=1

(Trace(W i,(κ))− λmax(W i,(κ))) (15)

in (10) is iteratively decreased, not all individual quantities

Trace(W i,(κ))− λmax(W i,(κ)) (16)

are iteratively decreased so the rank of each matrix W i,(κ)

is no longer iteratively reduced to one as expected. Worse,
W i,(κ) is rank-one but the rank of W i,(κ+1) in the next

iteration may turn to be more than one with

Trace(W i,(κ+1))− λmax(W i,(κ+1)) >
Trace(W i,(κ))− λmax(W i,(κ)).

Consequently, it is very difficult to achieve rank-one for all
W i,(κ) as desired. It is also impossible to add a ”weight” to
each term under the sum in the objective in (13) to handle
the individual convergence of Trace(W i)− λmax(W i).
We now develop a systematic way to resolve this issue as
follows. For κ = 0, 1, ..., and W (κ) = diag{W (i,(κ))} define

L(κ) = {i ∈ {1, ..., I} : rank(W i,(κ)) = 1} (17)

and generate W (κ+1) = diag{W i,(κ+1)} as the optimal so-
lution of the following SDP instead of SDP (13)

min
W=diag{W i}

F (W ) + µ

I∑
i=1

[Trace(W i)

−(wi,(κ)max )HW iwi,(κ)max ] s.t. (6b)− (6h), (8b), (18a)

Trace(W i)− (wi,(κ)max )HW iwi,(κ)max ≤ εtol, i ∈ L(κ).(18b)

Note that Trace(W i) ≥ wHWw for all ||w|| = 1 and it
is obvious that rank(W i) = 1 if and only if Trace(W i) −
wHmaxW

iwmax = 0 for some normalized wmax. Therefore,
the constraint (18b) for some tolerance εtol is introduced
to warrant the rank-one of all W i,(κ+1), i ∈ L(κ). As a
result L(κ) ⊂ L(κ+1) and L(κ) → {1, ..., I} is expected to
have all W i,(κ) of rank-one. Unlike (13), the iterations (18)
leads to achieving rank-one of all W i while the objective
function Fµ is still decreased.

In summary, we propose the following Large-Scale Non-
smooth Optimization Algorithm (Large-scale NOA) for the
multiple rank-one constrained optimization problem (10).

Initialization. Solve SDP

min
W=diag{W i}

F (W ) s.t. (6b)− (6h), (8b) (19)

to generate W (0) := diag{W i,(0)}. If rank(W i,(0)) ≡ 1
stop: W (0) is the global solution of the nonconvex opti-
mization problem (8). Otherwise set κ = 0 and define
L(κ) by (17).

κ-th iteration. For κ = 0, 1, .., solve (18) to generate
W (κ+1) := diag{W i,(κ+1)}. Reset κ = κ + 1 and define
L(κ) by (17). Stop whenever L(κ) = {1, ..., I}. Otherwise
go to the next iteration.

4. Simulation results

The computation facilities for our implementation are
Processor Intel(R) Core i5-3470 CPU @3.20GHz, Matlab
version R2013b and CVX with SDPT3. We set the toler-
ances ε = εtol = 10−5 and the penalty parameter µ = 106

which makes the penalty term µ
∑I
i=1(Trace(W (i,(0))) −

λmax(W i,(0))) at similar magnitude with the objective F (W (0)).
The data source for all examples is Matpower version 5.1
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[23]. All examples were considered in [16, 17, 9] by SDR
only. We recall that T is the number of matrix variables
W i in the OPF problem (8) and L(κ) is defined by (17)
is the set of rank-one matrices W i found after κ-th iter-
ation. The capability of our large-scale NOA in locating
the global optimal solution of the OPF problems is demon-
strated by showing that the global optimality tolerance
(GOT) of its found solution defined as

the found value- lower bound

lower bound

is almost zero.
The numerical examples are presented as follows.

4.1. Polish-2383wp system

There are n = 2383 buses, 327 generators and 2896
transmission lines, leading to 2056 nonlinear constraints
in (4b).
Initialization. A lower bound 1.8490×106 of (8) is found by
solving SDP (19). |L(0)| = 1210 and there are 32 matrices
W i,(0) of rank-more-than-one. Their largest size (smallest
size, resp.) is 10× 10 (2× 2, resp.).
Stage 1. |L(10)| = 1234 is achieved. There are 8 matrices
W i,(10) of rank-more-than-one. Their largest size (smallest
size, resp.) is 10× 10 and (3× 3, resp.).
Stage 2. |L(19)| = 1237 is achieved. There are 5 matrices
W i,(20) of rank-more-than-one. Their largest size (smallest
size, resp.) is 9× 9 (3× 3, resp.).
Stage 3. |L(25)| = I = 1242 is achieved. The found value
of the objective is 1.8408× 106 with GOT 4.3267e− 04.

4.2. Polish-2736sp system

There are n = 2736 buses, 420 generators and 3504
transmission lines, which lead to 2316 nonlinear constraints
in (4b).
Initialization. A lower bound 1.3041 × 106 of (8) is ob-
tained by solving SDP (19). |L(0)| = 1534 and there are 4
matrices W i,(0) of rank-more-than-one. Their largest size
(smallest size, resp.) is 6× 6 (4× 4, resp.).
Stage 1. |L(9)| = I = 1538 is achieved. The found value
of the objective is 1.3042× 106 with GOT 7.6681e− 05.

4.3. Polish-2737sop system

There are n = 2737 buses, 399 generators and 3506
transmission lines, which lead to 2338 nonlinear constraints
in (4b).
Initialization. A lower bound 7.7571 × 105 of (8) is ob-
tained by solving SDP (19). |L(0)| = 1532 and there are 6
matrices W i,(0) of rank-more-than-one. Their largest size
(smallest size, resp.) is 6× 6 (3× 3, resp.).
Stage 1. |L(2)| = I = 1538 is achieved. The found value
of the objective is 7.7572× 105 with GOT 1.2891e− 05.

4.4. Polish-2746wop system

There are n = 2746 buses, 514 generators and 3514
transmission lines, which lead to 2232 nonlinear constraints
in (4b).
Initialization. A lower bound 1.2039 × 106 of (8) is ob-
tained by solving SDP (19). |L(0)| = 1538 and there are 8
matrices W i,(0) of rank-more-than-one. Their largest size
(smallest size, resp.) is 6× 6 (3× 3, resp.).
Stage 1. |L(2)| = I = 1546 is achieved. The found value
of the objective is 1.2040× 106 with GOT 8.3063e− 05.

4.5. Polish-2746wp system

There are n = 2746 buses, 520 generators and 3514
transmission lines, which lead to 2226 nonlinear constraints
in (4b).
Initialization. A lower bound 1.626590× 106 of (8) is ob-
tained by solving SDP (19). |L(0)| = 1545 and there are 2
matrices W i,(0) of rank-more-than-one. Their size is 4×4.
Stage 1. |L(1)| = I = 1547 is achieved. The found value
of the objective is 1.626591× 106 with GOT 6.1478e− 07.

4.6. Polish-3012wp system

There are n = 3012 buses, 502 generators and 3572
transmission lines, which lead to 2510 nonlinear constraints
in (4b).
Initialization. A lower bound 2.5717 × 106 of (8) is ob-
tained by solving SDP (19). |L(0)| = 1682 and there are 7
matrices W i,(0) of rank-more-than-one. Their largest size
(smallest size, resp.) is 7× 7 (2× 2, resp.).
Stage 1. |L(4)| = I = 1689 is achieved. The found value
of the objective is 2.5727× 106 with GOT 3.8885e− 04.

4.7. Polish-3120sp system

There are n = 3120 buses, 505 generators and 3693
transmission lines, which lead to 2615 nonlinear constraints
in (4b).
Initialization. A lower bound 2.1314 × 106 of (8) is ob-
tained by solving SDP (19). |L(0)| = 1749 and there are 8
matrices W i,(0) of rank-more-than-one. Their largest size
(smallest size, resp.) is 8× 8 (2× 2, resp.).
Stage 1. |L(9)| = I = 1757 is achieved. The found value
of the objective is 2.1391× 106 with GOT 0.0036.

4.8. Numerical summary

One can observe that GOT of the solutions computed
by the large-scale NOA is very small, proving its capability
to provide the global solution of (8). Table 1 and Table
2 summarize the main points in our simulation. The sec-
ond and third columns of Table 1 are the number I of
bags in (7) by our decomposition and by that in [9], while
the fourth and fifth columns give the maximum size Ni
in (7). One can see that both I and the maximum Ni
by our decomposition are substantially smaller than their
counterparts by [9]. This leads to far smaller numbers of
variables in (8), which are provided in the seventh and
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Table 1: Comparison of bags number I, largest bag size Mi and number of variables

System I I by [9] Max. Ni Max. Ni by [9] Var. # in (6) Var. # in (8) Var. # in (8) by [9] Found value Found by [9]
Polish-2383wp 1242 2383 10 23 2,840,536 23,199 89,893 1.8408× 106 1.8742× 106

Polish-2736sp 1538 2736 10 23 3,744,216 27,298 104,388 1.3042× 106 1.3082× 106

Polish-2737sop 1538 2737 10 23 3,746,953 27,034 103,720 7.7572× 105 7.7766× 105

Polish-2746wop 1546 2746 10 23 3,771,631 29,024 108,950 1.2040× 106 1.2085× 106

Polish-2746wp 1547 2746 10 24 3,771,631 28,257 107,148 1.6266× 106 1.6324× 106

Polish-3012wp 1689 3012 10 24 4,537,578 30,996 116,799 2.5727× 106 2.6089× 106

Polish-3120sp 1757 3120 10 24 4,868,760 32,637 121,869 2.1391× 106 2.1608× 106

Table 2: Performance comparison

System Found value Found by [9] Found by [23]
Polish-2383wp 1.8408× 106 1.8742× 106 1.8685× 106

Polish-2736sp 1.3042× 106 1.3082× 106 1.3078× 106

Polish-2737sop 7.7572× 105 7.7766× 105 7.7763× 105

Polish-2746wop 1.2040× 106 1.2085× 106 1.2083× 105

Polish-2746wp 1.6266× 106 1.6324× 106 1.6317× 106

Polish-3012wp 2.5727× 106 2.6089× 106 2.5917× 106

Polish-3120sp 2.1391× 106 2.1608× 106 2.1427× 106

eighth columns. The number n(n+ 1)/2 of complex vari-
ables in (6) is also provided in the sixth column to contrast
to the number of complex variables in (8) in the seventh
column. Furthermore, the second column of Table 2 pro-
vides the best values of (4) found by our large-scale NOA,
which are far smaller than ones in the third and fourth
columns found by [9] and Matpower6.0 [23] (using an inte-
rior point method), respectively. In short, our computa-
tion approach to the OPF problem (8) outperforms other
existing approaches in terms of computational efficiency
and performance.

5. Conclusion

The OPF problems over power transmission network
are large-scale optimization problems, which involve a large
number of quadratic equality and indefinite quadratic in-
equality constraints and thus are difficult computationally.
We have developed a large-scale nonsmooth optimization
algorithm to compute their optimal solutions, which is
efficient and practical for large-scale power transmission
networks of a few thousands of buses. Applications of
the developed large-scale NOA to the OPF problems over
three-phase power transmission networks are currently un-
der investigation.
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