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Abstract

Control approaches for a two-link flexible manipulator are studied in the
context of robust synthesis for Linear Parameter-Varying systems. Differ-
ent treatments of the inertia matrix variations in the manipulator system
are examined in three control law design formulations. The first two designs
are based upon scaled H,, or structured singular value synthesis. The third
design makes use of a new approach for robust gain-scheduled synthesis. Re-
sults show that this gain-scheduling technique maximizes both performance
and robustness over the entire range of manipulator configurations.

1 Introduction

Flexible manipulators can take many forms and serve many purposes. The
best known flexible manipulator is probably the space shuttle’s remote ma-
nipulator system (RMS), but there are many others which are much closer
to home. Many devices that one sees every day, such as a construction crane
or a cherry picker, can also be examples. The study of closed-loop control for
these types of devices has been motivated primarily by the combined need
for lightweight structures, large work spaces, precision tracking, and distur-
bance rejection. The first requirement is driven by cost, the latter three by
system level performance specifications. It is in space systems where these
requirements most often lead to a challenging closed-loop control problem.

While of little use in practical applications, a two-link flexible manipula-
tor is an excellent benchmark for the study of the control issues for flexible



systems. From a feedback control viewpoint, it brings with it the critical
problems of flexibility, modeling uncertainty, and varying inertial proper-
ties. It remains a truly nonlinear problem and thus resists purely linear
approaches to control law design. A number of different nonlinear tech-
niques have been proposed for the calculation of control laws: a passive
design approach is presented by Juang et al.[1], Madhavan & Singh[2] and
Khorrami et al.[3] suggest feedback linearization combined with an outer
loop linear controller, Su & Leung[4] derive sliding mode control laws under
rigid body assumptions. Finally, an observer based H., approach is used
by Meressi & Paden[5] to derive a gain-scheduled controller for the two-link
flexible manipulator control problem.

In this paper, three different control law design approaches for flexible
manipulators are examined. The goal is to highlight the critical issues
and trade-offs in control synthesis for these systems and then to present
techniques for dealing with them. The work is limited to the framework
of robust synthesis for Linear Parameter-Varying systems. It is left to the
reader to compare these approaches to alternative techniques such as those
mentioned above.

This paper is organized as follows. In Section 2, some notations and
definitions are presented to provide a context for the design formulations
which follow. Section 3 describes the two-link flexible manipulator control
problem and the laboratory experiment SECAFLEX. The design formula-
tions for the three different approaches are presented in Section 4. First, the
common elements of the synthesis problem are described. The three control
synthesis formulations are then presented, progressing from the simplest to
the most advanced approach. Section 5 presents and compares the results
for the different techniques by examining both the controllers and the re-
sulting linear closed-loop time responses. Section 6 finishes with conclusions
and final observations.

2 Notation

The goal of this section is to provide the required nomenclature and a
brief overview of the underlying theory used in this work. The notation
diag(Xi,...,Xn) is used to represent the block-diagonal matrix
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Linear Fractional Transformations or LFTs will be used to describe system

. ) ) . Py P .
interconnections. For matrices K and P = ( - 12) of appropriate
Py Py

dimension and assuming that (I — Py K') has full rank, the lower LFT is
defined as
F(P,K)= P+ P K(I — PQQK)_IPQL (1)

and assuming that (I — Pi; K) has full rank, the upper LFT is

Fu(P,K)= Py + Py K(I — PK)™ " P,. (2)

The term Linear Parameter-Varying (LPV) system refers to a system of the
form,

&= A(0)x + B(0)w (3)

z=C(0)x+ D(0)w, (4)

where 0(t) is a vector of time-varying parameters. The notation o(A) rep-
resents the singular values of matrix A.

For a fixed parameter vector 4, the system in eqns. (3) and (4) be-
comes Linear Time-Invariant (LTI). A design technique that targets robust
performance for LTI systems is p-synthesis. The synthesis procedure is
driven by the so called D — K iteration scheme(in our case S — K iteration)
which consists of sequentially designing controllers and scaling functions
which minimize an upper bound on the scaled H,, norm of the closed-loop
system (Doyle[6], Safonov[7], and Doyle[8]). The controller design step is
performed using H,, synthesis. The scaling step can be handled by a num-
ber of different algorithms, depending on the uncertainty structure. The
iterative procedure does not have guaranteed global convergence, but has
been shown to work well in many applications. The p-synthesis procedure
is used in the first two designs presented in this paper.

An approach similar to p-synthesis, but for LPV systems has been de-
veloped using the Bounded Real Lemma (Anderson[9]) and Parameter-
Dependent Lyapunov functions (Wu et al.[10], Apkarian & Adams[11]).
This technique, which targets LPV robust performance, is used in the last
design in this paper.

3 Problem Description

The control of a two-link flexible manipulator is a problem with a num-
ber of simultaneous and sometimes conflicting requirements. First of all,
both rigid body and lightly damped structural modes must be stabilized.
The problem is complicated by uncertainty in the high frequency dynam-
ics of the system. This is due to the unreliability of modeling and system



identification approaches above some limited bandwidth. Next, the maxi-
mum possible performance should be achieved, measured by settling time,
overshoot, and disturbance rejection. Finally, the variation in the system’s
inertial properties as a function of manipulator geometry must be consid-
ered. This last requirement is potentially the most challenging, since in the
strictest sense it is a truly nonlinear control problem.

The laboratory structure SECAFLEX is used in this work as a bench-
mark for the study of flexible manipulator control problems. It is a two
link flexible planar manipulator driven by geared DC motors, built as a
laboratory platform for control-structure interaction experiments at CERT-
ONERA in Toulouse, France. Its two flexible members are homogeneous
beams. There is a concentrated mass at the elbow due to the DC motor and
a concentrated mass at the tip of the second beam which is the payload.
The modeling of the manipulator has been studied extensively. Approaches
to formulating the equations of motion include an analytic form based on
Euler-Bernoulli cantilever-free modes, the introduction of fictitious springs,
and a finite-element based technique (Alazard & Chrétien[12]). A simplified
drawing of this two-link manipulator is shown in Fig. 1. 6; and 6, are respec-
tively the shoulder and elbow joint angles. 7y and 7, are the corresponding
control torques. The second-order form of the manipulator equations of

Figure 1: Two-Link Flexible Manipulator

motion can be written as
M(02)i(t) + Dg(t) + Kq(t) = Fr(t) + C(q(t),4(t)), (5)

where M, D, K, and F are the inertia, damping, stiffness, and control
distribution matrices respectively. C(¢(t), ¢(t)) is a vector of nonlinearities
due to Coriolis and centripetal forces. r(#) is the input vector, r = [ 7, 7 |7,

The input vector can be redefined to approximately cancel out the nonlinear



forces
r(t) = u(t) = C"(q(t), (1)) (6)
to give us the second-order LPV form of the equations of motion,
M(6,)(t) + Dq(t) + Kq(t) = Fu(t) (7)
Due to the variable geometry of the system, the inertia matrix is a function
of the second joint angle, #,. This dependence causes significant changes

in the response of the system to input torques over the range of possible
configurations. If we consider an output vector,

y=1[06:0,]" = Hq(2), (8)

then we can define the family of linearized transfer functions from wu to
y as G(s,0;). The parameter f, denotes a fixed value of 6, at which a
linearization is performed. Fig. 2 illustrates the variation of the manipulator
dynamics with geometry by showing the singular values of G(s,f,) at three
different values of 5. The values 0, in [0, 7] capture the range of all possible
inertia matrix variations. Symmetry provides that M (6;) = M (27 — 6;) for
all 0y in [7,27].
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Figure 2: o(G(jw,0,))
6, = 0 (solid), 7 /2 (dashed), = (dotted)
4 Control Problem Formulation

The general framework of H,, and the structured singular value is used
in this study for its ability to handle multi-specification problems. Within



this framework, the performance objective of command following can be
handled by a weighed minimization of the sensitivity function. A frequency
dependent weight, W,,, is formulated that penalizes the error, e, between an-
gular position commands, wy, and the output, y. By forcing this weighted
sensitivity function to be small, the complementary sensitivity function ap-
proaches identity at low frequencies, thus providing good command track-
ing.

The performance objective for the two-link manipulator is a rapid and
decoupled response to position commands with minimal overshoot. The
achievable performance is greatly influenced by the formulation of robust-
ness requirements and gain-scheduling. With this considered, we find that
the performance weighting function becomes an instrument for tuning the
design. It is used to achieve the maximum robust performance, that is
the best performance in the presence of all uncertainties permitted by the
synthesis model. We restrict the selection to first order weights of the form,

a(s +b)

Wp(s): s+ c

Iz (9)

The requirement for robustness to high frequency unmodeled dynamics
can be included in the synthesis model as an additive uncertainty model. An
additive uncertainty weight can be formulated by considering the difference
between some high order geometry dependent model, G(s,0,), and some
reduced order design model, G,(s,0;). The design model is of lower order
but still dependent on manipulator geometry.

Let W be an additive weight and Ay a complex uncertainty block, scaled
such that o,,.:(Af) < 1. The error between the full-order and reduced-order
models is defined as F(s,6,),

E(s,05) = G(s,0;) — G.(s,0,) (10)

The additive uncertainty weight must then provide a frequency domain
bound of this error, that is,

(Ws(jw)| > m@zxxamw{E(jw,ég)} for all w € [0,00) (11)

For the SECAFLEX application, this weight has been defined as,

4(s 4 .1)?

Wf(S) = (S—I‘ 100)2 2X2-

(12)

The second-order system matrices which result from the fictitious springs
modeling approach, including one flexible mode for each beam, follow. This
is the manipulator model used for control law synthesis in this study. The
dependence of the inertia matrix on #; can be expressed as,

M(0y) = M(x/2) + cos(b2)(M (7 /2) — M(x)) (13)



where

34.7077  9.7246 23.6398 5.9114
9.7246 9.8783 9.7246 5.9114

M(7/2) = | 93 6308 9.7246 17.5711 5.9114
59114 59114 59114 3.7233
and
17.0296 0.8856 9.7776 0.8430
Mix) = 0.8856 9.8783 4.7016 5.9114

9.7776  4.7016 7.5249 3.0311
0.8430 5.9114 3.0311 3.7233

The damping, stiffness, control effectiveness, and output matrices are re-
spectively,

D = diag(0,0,0.09,0.05)
K = diag(0,0,89.1473,45.6434)

]2><2
F =
0
H = []2><2 02><2]

The manipulator equations of motion can be rewritten in first order form

. 0 I 0
0= ok —wyn |70+ | ayap |10 (0

y=[H 0] 2(1 (15)

The last requirement, to handle the nonlinear nature of the manipula-
tor dynamics motivated the development of three different approaches to
control synthesis for this problem. Each design treats the inertia matrix
variations differently in the design formulation. In Design #1, the varia-
tions are simply neglected in the synthesis model. In this case, a controller
is found at some nominal condition and then analyzed over the set of admis-
sible geometries. In Design #2. the inertia matrix variations are captured
in a parametric uncertainty model. The design goal in this case is to find a
single controller which gives robust performance for all 8; € [0, 7]. Designs
#1 and 2 are performed using a D — K iteration procedure to minimize
the scaled H., norm of the closed-loop system. In design #3, the synthesis
procedure described by Apkarian & Adams|[11] is used to directly synthe-
size a parameter varying controller which guarantees both performance and
robustness to high frequency unmodeled dynamics.



4.1 Design #1

For this first design, the simple approach is taken to synthesize the best
possible controller at some nominal manipulator geometry, 8, = 7/2. All
variations in the inertia matrix are neglected. This design provides a bench-
mark for those that follow since it shows the maximum performance that
can be achieved with only performance and high frequency roll-off enforced.
The synthesis model for this case is illustrated in Fig. 3. The performance
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Figure 3: Synthesis Model for Design #1
weight used for this design is
0.45(s+ 1)
Wy(s) = ——I 16
o8 = = o e (16)
In the final D — K iteration, the transfer function between the inputs
wy,...,ws and outputs z1,...,z4 is scaled by the matrix,
S = diag(0.064]2X2,]2X2) (17)

4.2 Design #2

In the second design, the inertia matrix variations of the manipulator are
treated as parametric uncertainty. The goal is thus to find a robust con-
troller which guarantees performance in the presence of both high frequency
unmodeled dynamics and changes in inertial properties. The approach is
very conservative since an invariant controller is asked to provide robust
performance for a system with time-varying parameters.

Consider the second order state space model of the system,

M(0:)i(t) + Di(t) + Kq(t) = Fu(t (18)



We would like to represent the variation in the inertia matrix in a non-
conservative manner. A non-conservative linear fractional representation of
these changes can be found if the variation in the inertia matrix can be
written as an affine function. By letting p = cos(6z), the model can be
rewritten as,

Mo + M,pli(t) + Di(t) + Ka(t) = Fu(t) (19)

A singular value decomposition can then be used to find matrices I', and
W, such that M, = I';W,. The column dimension of I', and row dimension
of W, are equal to the rank, r, of the matrix M,. The system can now be
rewritten in descriptor form

[E + T (plysr)Wi(t) = Ax(t) + Bu(t) (20)
B A I A ) P
F:Hﬁ],wz[o W, | (22)

An LFT description of the above system follows. Let us define a new system,
G.(s) = C(sI — A)™'B + D, such that G,(s,6,) = Fi(G,(s), plax2). This
new system is defined by the matrices (Adams & Chrétien[13]),

A=[E7'Al, B=[E7'B — E'T, (23)
. C " 0 0 .
¢= [ WE-'A ] D= [ WE'B —WE™'T (24)

By capturing the inertia matrix variations with manipulator geometry as
an LFT, the robust control problem can be formulated such that for all
p € [—1,1] and equivalently for all 8; € [0, 7] the closed-loop system will
remain stable and achieve a certain degree of performance. Since this pu-
synthesis solution must consider all uncertainties as complex, there is some
conservatism built into the procedure.

The p-synthesis design model is formed by combining the performance
and robustness formulations into a single multi-specification synthesis model.
This model is illustrated in Fig. 4. In the scaling step of the D-K it-
eration, the transfer function between the inputs wy,...,ws and outputs
Z1,...,2¢ 18 scaled by a proper transfer function matrix with the structure
S = {diag(silax2 S2lax2 S1): s1,82 € R, 81,80 >0, Sy € C**2 & =
ST > 0 }. Unfortunately, currently available commercial software do not
allow for non-diagonal scaling blocks. In addition, the curve-fitting based
approaches to scaling calculation offered by existing toolboxes can be unre-
liable for systems with lightly damped flexible modes. These shortcomings
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Figure 4: Synthesis Model for Design #2

led to the development of new algorithms for improved scaling function
calculation as a part of this effort (Adams & Chrétien[14]).

The performance weighting function used for this design is,

0.9(s 4 0.03)

Wy(s) = (s+1)

]2><2 (25)
This somewhat unconventional high-pass weighting results from a difficulty
in reducing overshoot in the closed-loop step responses. The uncertainty
block between the input w and output z is now A = diag(A,e. s, Ay, plaxa).
The final scaling function of the D-K iteration for this problem is static and
given by,

0.427 —0.010

S = diag(0153]2><2,]2><2, —0.010 0.205 ) (26)

4.3 Design #3

The previous design formulation relies on small gain theory (Desoer &
Vidyasagar[15]) to guarantee robustness with respect to parameter vari-
ations in the inertia matrix of the flexible manipulator. This approach is
conservative for three reasons: that p is treated as a complex number, that
no restriction is placed on the rate of variation of p, and finally that we lim-
ited ourselves to linear time-invariant controllers. This conservatism was
a strong motivation in the development of the gain-scheduling techniques



based upon the concept of parameter-dependent Lyapunov functions de-
scribed by Wu et al. [10], Feron et al. [16], and Apkarian et al. [17]. These
techniques provide a systematic treatment of the gain-scheduling problem.
Gain-scheduled controllers are characterized via Linear Matrix Inequalities
(LMIs) which are readily solved using available convex semi-definite pro-
gramming software (Gahinet et al. [18]). The reader is referred to Wu et al.
[10], Beckeret al. [19], and Apkarian & Adams[11] for more details on these
techniques. The basic idea of these approaches is to exploit knowledge of
the both the range of possible values of the parameter 6, and its rate of
variation 92.

A scaling approach, analogous to that used in the D — K iterations of
our previous p-synthesis designs, has been implemented to create a complete
methodology for the gain-scheduled control of uncertain systems (Apkarian
& Adams[11]). In addition to the real versus complex and rate of variation
considerations, this technique further reduces conservatism in the design by
taking advantage of parameter dependent scaling matrices.

For the two-link flexible manipulator problem, there is only one time-
varying parameter, the second arm angle ;. As described previously, its
value can be restricted by symmetry to 6, € [0, w|. A realistic limit on
the rate of variation can be determined by considering the angular con-
straints of the manipulator and the maximum available control torques,

16,] < 100 deg/s.

The design model which issues the plant data used in the LMI formula-
tion is shown in Fig. 5. It is interesting to note the similarities between this
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Figure 5: Synthesis Model for Design #3

design model and the one used in design #1, Fig. 3. In satisfying similar
objectives, we are now solving the controller synthesis problem for all ad-
missible operating conditions. It is also worthwhile to observe the contrasts



between designs #2 and #3. Unlike design #2, there is no parameter un-
certainty block in design #3 corresponding to the changing inertia matrix.
These variations are no longer treated as uncertainty at all, but rather as a
measurable output injected into the controller dynamics.

The performance weight used for direct gain-scheduled synthesis is,

C00(s+1)

Wy(s) = Gt O'OB)IM (27)

The uncertainty block between w and z is A = diag(A,e 5, Ay). The final
scaling function for this problem is,

1 3.363 1542 0 0.074 1542 0
57(0) 1= 0 0.02075, ] + cos(f:) l 0 2D
(28)
It should be noted that the scheduling parameter in this design is not
an externally evolving variable, uncorrelated with the system dynamics.
The scheduling variable, 65, is also a state of the manipulator system. By
treating its value as external to the system, we are ignoring the fact that
the evolution of 6 is restricted not just to some hypercube of positions
and rates, but by the nonlinear dynamics of the system. The result is
therefore some degree of design conservatism. Obviously, this last design
approach does the best job in capturing the physical reality of the problem.
If, due to this conservatism, satisfactory closed-loop performance was still
not achieved with this approach, one might be led to investigate nonlinear
H,, techniques. To handle multiple design specifications, some form of
nonlinear D — K iteration would have to be derived. We will see in the next
section that this is thankfully not necessary.

5 Results

This section presents the results of the three design formulations described
above. For each design, we first look at the resulting controller’s frequency
response and how it varies (if at all) with manipulator geometry. Step
responses are shown at three different values of 5 in order to illustrate how
well the controller regulates the system over the entire range of parameters.
The full order manipulator model is used for these simulations.

5.1 Design #1

In this case, no attempt was made to account for the variations in inertial
properties, neither through robustness nor by gain-scheduling. The singular



values of the best controller are shown in Fig. 6. The control law resembles
a proportional-plus-derivative controller with a steep high frequency roll-off.

In Fig. 7, the response of the linearized closed-loop system to simulta-
neous 1 degree step commands in the two joint angles is shown at three
different values of 5. As expected, at the nominal geometry the controller
gives a rapid, well-damped response. It should not be surprising that, at
the extreme values of 65, the stability of the closed-loop system is marginal
and the responses very poor. This design thus demonstrates best nominal
performance with no gain-scheduling and poor robustness.

5.2 Design #2

In this design, the variations of the inertia matrix were considered as a
parametric uncertainty in the robust synthesis formulation. The resulting
controller, whose gains are shown in Fig. 6, is therefore not gain-scheduled
with respect to #;. The inclusion of the parameter robustness requirements
in the design problem has the result of reducing the maximum gains of the
controller. The notch filter effect at the flexible mode frequencies provides
an extra degree of high frequency attenuation.

The time responses, shown in Fig. 7 demonstrate the increased robust-
ness of this design to variations in @;. Since our controller is parameter
invariant, this is of course at the cost of degraded nominal performance
which is considerably slower than in Design #1. This design illustrates the
case of robust performance with no gain-scheduling.

5.3 Design #3

By allowing the controller to vary with manipulator geometry, the gain-
scheduling technique used in this final design achieves a higher level of per-
formance. We see in Fig. 6 that the controller gains evolve to compensate
for the changing inertial properties of the manipulator. This evolution cor-
responds closely to the variations of the open-loop system shown in Fig. 2.

The linear step responses presented in Fig. 7 are rapid and well-damped
at all values of #;. The responses at all geometries are much faster than in
the previous case. The gain-scheduled controller comes close to reproducing
the maximum level of performance demonstrated in Design #1, but for all
manipulator configurations.



6 Conclusions

This study has examined the application of three different control law design
approaches to a flexible two-link manipulator. The results have shown the
importance of successfully balancing the trade-offs between performance, ro-
bustness, and gain-scheduling with the least possible level of conservatism.
Reducing conservatism means maximizing the use of information available
to the controller while limiting robustness to only that which is physically
meaningful in the context of an application. The final design technique,
an advanced gain-scheduling approach based on parameter-dependent Lya-
punov functions, does the best job of exploiting these ideas. Frequency and
time domain results for these approaches have been presented to illustrate
the advantages and disadvantages of each.
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