
Second-order nonsmooth optimization for H∞

synthesis

Vincent Bompart ∗ Dominikus Noll † Pierre Apkarian ‡

Abstract

The standard way to compute H∞ feedback controllers uses alge-
braic Riccati equations and is therefore of limited applicability. Here
we present a new approach to the H∞ output feedback control design
problem, which is based on nonlinear and nonsmooth mathematical
programming techniques. Our approach avoids the use of Lyapunov
variables, and is therefore flexible in many practical situations.

Keywords: Output feedback control – H∞ control – semi-infinite program-
ming – sequential quadratic programming (SQP) – nonsmooth optimization
– eigenvalue optimization – trust-region.

1 Introduction

Well designed feedback control systems in high technology fields are expected
to respond favorably to a list of concurring performance specifications such as
stability, good regulation against disturbances, desirable responses to com-
mands, robustness, control law specifications, system security, and much else.
In addition, controllers should be hardware implementable at low cost, and
should allow a flexible adaption to strategic changes during the model build-
ing process. These ever growing demands have shown the limitations of

∗ONERA, Control System Department, 2 av. Edouard Belin, 31055 Toulouse, France
- and - Université Paul Sabatier, Institut de Mathématiques, 118 route de Narbonne,
31062 Toulouse, France - Email: bompart@onera.fr - Tel: +33 5.62.25.25.25 +22.11 -
Fax: +33 5.62.25.27.64.

†Corresponding author, Université Paul Sabatier, Institut de Mathématiques, Toulouse,
France - Email: noll@mip.ups-tlse.fr - Tel: +33 5.61.55.86.22 - Fax: +33 5.61.55.83.85.

‡ONERA, Control System Department - and - Université Paul Sabatier, Institut de
Mathématiques, Toulouse, France - Email: apkarian@onera.fr - Tel: +33 5.62.25.27.84
- Fax: +33 5.62.25.27.64.

1

currently used mathematical tools for synthesis, which are based on solving
algebraic Riccati equations (AREs). The rise of linear matrix inequalities
(LMIs) since the early 1990s has certainly improved the situation, but the
main limitations of these approaches persist.

In response, various new design methods have been proposed since the
late 1990s, including methods from global optimization, [6, 7, 37, 34], matrix
inequality constrained nonlinear programming, [14, 24, 25, 5, 36], augmented
Lagrangian methods, [13, 30], eigenvalue optimization, [1, 2, 3, 19], and oth-
ers. Presently we discuss a new strategy for H∞ output feedback control
synthesis, which has several advantages over existing approaches, because
it avoids the use of Lyapunov variables. We shall show that this leads to
much smaller and better manageable problems, at the price that controller
synthesis becomes a nonsmooth optimization program. We develop local
nonsmooth optimization strategies suited for this new context, and show
that they improve the situation considerably.

2 Problem setting

We consider a linear time-invariant plant described in standard form by the
state-space equations

P (s) :

ẋ
z
y

 =

A B1 B2

C1 D11 D12

C2 D21 0p2×m2

x
w
u

 ,

where s is the Laplace variable, x ∈ Rn is the state of the system, u ∈ Rm2

the control, w ∈ Rm1 an exogenous signal (noise, commands), z ∈ Rp1 the
regulated variable (response of the system to the input w), and y ∈ Rp2

the measured output. The goal of feedback control synthesis is to design an
output feedback controller

K(s) :

[

ẋK

u

]

=

[

AK BK

CK DK

] [

xK

y

]

where xK ∈ RnK , AK ∈ RnK×nK , BK ∈ RnK×p2, CK ∈ Rm2×nK and DK ∈
Rm2×p2, such that the following three criteria are met:

Internal stability: The closed-loop system obtained by substituting K into
P is exponentially stable.

Performance: Among all internally stabilizing controllers, K minimizes the
H∞-norm of the performance channel w → z.

2

Control law specifications: The controller K may be subject to addi-
tional structural constraints. For instance, one may look for decentralized
controllers, reduced-order controllers, PID, feed-forward, lead lag structures,
etc.

Let us explain the performance requirement for the case u = Ky of a
static output feedback controller, where DK = K ∈ Rm2×p2. Here the closed-
loop transfer function for the performance channel w → z is

Tw→z(K)(s) = D(K) + C(K)
(

sIn −A(K)
)−1

B(K) (1)

where the closed loop data are

A(K) = A+B2KC2 B(K) = B1 +B2KD21

C(K) = C1 +D12KC2 D(K) = D11 +D12KD21

For brevity, we shall subsequently write T (K,ω) := Tw→z(K)(jω). Denoting
by λ1 the maximum eigenvalue function on the space of Hermitian matrices,
and by σ̄ the maximum singular value of m1 × p1 matrices, we define

f(K,ω) = λ1(T (K,ω)HT (K,ω)) = [σ̄(T (K,ω))]2 ,

where ZH stands for the conjugate transpose of the complex matrix Z.
The square of the H∞ norm is then defined as

‖Tw→z(K)‖2
∞ = max

ω∈[0,∞]
f(K,ω). (2)

Optimizing the performance of the controller therefore leads to minimizing
the function f(K) = maxω∈[0,∞] f(K,ω) over the set S of all closed-loop
exponentially stabilizing controllers K ∈ R

m2×p2.
Notice that f is nonsmooth with two possible sources of nonsmoothness:

(a) the infinite max-operator, and (b) the nonsmoothness of λ1, which may
lead to nonsmoothness of f(·, ω) for fixed ω.

Remark. A difficulty is that the set of exponentially stabilizing controllers
S is open and not a constraint set in the usual sense of nonlinear program-
ming. We have observed that it is usually possible to ignore the constraint
K ∈ S, and start the minimization (3) with an initial closed-loop stabilizing
controller K ∈ S. The fact that ‖Tw→z(K)‖∞ is minimized, and therefore
stays finite, very often implies closed-loop stability of the limit point K̄. That
is why we shall consider program

min
K∈Rm2×p2

f(K) = ‖Tw→z(K)‖2
∞. (3)

3

under the implicit assumption that iterates Kk and the limit K̄ are closed-
loop stabilizing.

In those cases where ‖Tw→z(K)‖∞ < ∞ does not imply closed-loop sta-
bility, a problem occurs. Here a minimizing sequence Kk ∈ S for (3) will
converge to a controller K̄ on the boundary of the domain S. Such a K̄ is
not a valid solution of the control problem. Fortunately, the phenomenon is
easily detected, and a practical way out is to consider an additional closed-
loop transfer channel Tstab(K, s) = (sI − A(K))−1, called the stabilizing
channel. For a small parameter ǫ > 0, we may then minimize the objective

f(K) = max
(

‖Tw→z(K)‖2
∞, ǫ‖Tstab(K)‖2

∞

)

, (4)

and we are now sure that f(K) < ∞ implies closed-loop stability of K.
Notice that f is again of the form (3) if a transfer matrix with the two
diagonal blocks Tw→z and ǫTstab is introduced. �

Remark. Our approach to H∞ controller synthesis based on program (3)
differs substantially from standard ways to solve such problems, where the
H∞ norm is avoided and replaced by a matrix inequality using the bounded
real lemma [10]. In solving (3) directly we dispense with Lyapunov variables,
which leads to a spectacular reduction in the number of unknowns, especially
when small controllers for large systems are sought. In exchange we have to
deal with nonsmoothness and with semi-infinity, and those are addressed
during the next sections. �

First-order nonsmooth optimization methods for (3) have for the first
time been proposed in [1], and have been further developed in [2, 4, 3]. Here
we propose a second-order approach, which when combined with the first-
order technique speeds up the minimization process at the end, improves the
final precision, and serves as an additional convergence certificate.

3 Approach via semi-infinite programming

In the previous section we have introduced program (3) for the case of static
controllers, and we shall continue to do so because the general case of dynamic
K may be reduced to the static case by prior dynamic augmentation of the
system. More precisely, the following substitutions are performed:

K →

[

AK BK

CK DK

]

, A→

[

A 0
0 0k

]

B1 →

[

B1

0

]

, C1 →
[

C1 0
]

B2 →

[

0 B2

Ik 0

]

, C2 →

[

0 Ik
C2 0

]

, D12 →
[

0 D12

]

, D21 →

[

0
D21

]

.

(5)

4

Now we have the following

Lemma 1 . For a closed-loop stabilizing controller K, the set of active
frequencies Ω(K) := {ω ∈ [0,∞] : f(K) = f(K,ω)} is either finite, or
Ω(K) = [0,∞], that is, f(K,ω) = f(K) for all ω.

Proof. Notice that as K is fixed, we are concerned with a one parameter
family ω 7→ T (K,ω)HT (K,ω) of m1 × m1 Hermitian matrices. Here the
bundle of the m1 eigenvalues λi

(

T (K,ω)HT (K,ω)
)

as functions of ω has a
very specific structure: it consists of m1 real analytic functions φi(ω), ω ∈ R;
see e.g. [21, p. 82, p. 138], or [26]. More precisely, there are m1 real analytic
functions φ1, . . . , φm1

such that

{σ1(T (K,ω)), . . . , σm1
(T (K,ω))} = {|φ1(ω)|, . . . , |φm1

(ω)|}, (6)

where σi(T (K,ω)) are the singular values of T (K,ω). In consequence, the
maximum eigenvalue function (2) is the maximum of m1 real analytic func-
tions φ2

i (ω). These φ2
i are also analytic at ∞, because we are dealing with a

stable (proper) transfer matrix T (K,ω), which is rational as a function of ω.
(The statement above may be made more precise: There exist functions φi

which are analytic on a strip B on the Riemann sphere S2 = C ∪ {∞}, such
that B contains the meridian S1 = R ∪ {∞} passing through the north pole
∞, with φi taking real values on S1, such that (6) is satisfied for all ω ∈ S1.)

Suppose now Ω(K) is infinite. Then one of these m1 real analytic func-
tions φ2

i has an infinity of maxima on S1 with the same value f(K). Since
S1 is compact, these maxima have an accumulation point ω̄. In terms of the
analytic extensions on B, that means the Taylor expansion of the φ2

i in ques-
tion at ω̄ is the same as the Taylor expansion of the function with constant
value f(K). This implies indeed φ2

i (ω) = f(K) for all ω. �

Remark. 1) The stable transfer function φ : s 7→ s−1
s+1

satisfies φ(jω)φ(−jω) =
1, so it is theoretically possible that Ω(K) = [0,∞]. This may even arrive
in practice: It is known that the so-called central (full order) optimal H∞-
controller K∞ renders the frequency plot ω 7→ f(K∞, ω) flat or all-pass.

2) Notice also that we cannot omit the frequency ω = ∞ in the dis-
cussion, as witnessed by the stable transfer function φ(s) : s 7→ s+1

s+2
. Here

maxω∈[0,∞] φ(jω)φ(−jω) = 1 is attained at ω = ∞.
3) The frequencies ω ∈ Ω(K) will be called the peaks of the frequency

curve at K. Local maxima of the frequency curve ω 7→ f(K,ω) which are
not peaks will be called secondary peaks. Notice that the above argument
also shows that the number of secondary peaks is finite. �

5

For the technical formulas we shall concentrate on those K, where the
set of active frequencies or peaks Ω(K) = {ω ∈ [0,∞] : f(K) = f(K,ω)}
is finite. In practice we have never observed flat frequency curves when the
order of the controller is smaller than the order of the plant.

During the following we will analyze the case where the multiplicity of
λ1(T (K,ω)HT (K,ω)) is one at all active frequencies ω. This is motivated by
practical considerations, because nonsmoothness (b) never occurred in our
tests. The necessary changes required for the general case will be discussed
in Section 4.3.

It is useful to cast program (3) as an equivalent constrained semi-infinite
program

minimize t
subject to f(K,ω)− t ≤ 0, ω ∈ [0,∞]

(7)

with decision variable (K, t).
In [18] three approaches to semi-infinite programming are discussed: ex-

change of constraints, discretization, and local reduction. Here we use a local
reduction method. The main ideas are recalled below; see also [20] for this
approach.

Let (K̄, t̄), with t̄ = f(K̄), be a local solution of (7). Indexing the ac-
tive frequencies Ω(K̄) = {ω̄1, . . . , ω̄p} at K̄, we suppose that the following
conditions are satisfied

(i) f ′
ω(K̄, ω̄i) = 0, i = 1, . . . , p.

(ii) f ′′
ωω(K̄, ω̄i) < 0, i = 1, . . . , p.

(iii) f(K̄, ω) < f(K̄), for every ω /∈ Ω(K̄) = {ω̄1, . . . , ω̄p}.

These assumptions define the setting denoted as the “standard case” in semi-
infinite programming [18]. The three conditions express the fact that the
frequencies ω̄i ∈ Ω(K̄) are the strict global maximizers of f(K̄, ·). Notice
that condition (iii) is the finiteness hypothesis already mentioned, justified by
Lemma 1, while condition (ii) is slightly conservative, because the necessary
optimality condition only tells us that f ′′

ωω(K̄, ω̄i) ≤ 0.

Remark. Notice that f(K̄, ·) is twice differentiable at each ω̄i even with-
out the hypothesis that the maximum singular values of the T (K, ω̄i) have
multiplicity 1. This is because the maximum singular value function ω →
σ̄(G(jω)) of a stable transfer matrix G is always twice continuously differen-
tiable at its local maxima [9]. �

Conditions (i) and (ii) allow the implicit function theorem, according
to which we can find a neighborhood U of K̄, and neighborhoods Vi of ω̄i

6

(i = 1, . . . , p), together with C1-functions ωi : U → Vi, such that the following
conditions are satisfied

(iv) ωi(K̄) = ω̄i, i = 1, . . . , p.

(v) f ′
ω (K,ωi(K)) = 0, i = 1, . . . , p.

(vi) Whenever K ∈ U and ω ∈ Vi satisfy f ′
ω(K,ω) = 0, then ω = ωi(K).

Condition (ii) says f ′′
ωω(K̄, ω̄i) < 0, so by shrinking U if required, we may

arrange that f ′′
ωω (K,ωi(K)) < 0 for K ∈ U . Then ωi(K) are local maxima

of f(K, ·). Moreover, by (vi), ωi(K) is the only critical point of f(K, ·) in Vi.
We then have the following

Lemma 2 . Under conditions (i) – (iii) the neighborhood U of K̄ may be
chosen such that max

ω∈[0,∞]
f(K,ω) = max

i=1,...,p
f(K,ωi(K)) for every K ∈ U . In

particular, Ω(K) ⊂ {ω1(K), . . . , ωp(K)} for every K ∈ U .

Proof. Choose U and Vi such that conditions (iv) - (vi) are satisfied. Sup-
pose that contrary to the statement there exists a sequence Kr → K̄ such
that

mr := max
i=1,...,p

f(Kr, ωi(Kr)) < max
ω∈[0,∞]

f(Kr, ω) =: Mr.

Pick ωr where the maximum Mr is attained. Passing to a subsequence,
we may assume ωr → ω∗ for some ω∗ ∈ [0,∞]. Since mr → f(K̄) and
Mr → f(K̄), we have f(K̄) = f(K̄, ω∗). By axiom (iii), that means ω∗ = ω̄i

for some i = 1, . . . , p. Then (Kr, ω
r) ∈ U × Vi from some index r0 onwards.

But f ′
ω(Kr, ω

r) = 0, because ωr is a maximum at Kr, so condition (vi)
implies ωr = ωi(Kr). That shows mr = Mr for r ≥ r0, a contradiction. �

Altogether, we have shown that program (3) is locally equivalent to the
standard constrained nonlinear program

minimize t
subject to f (K,ωi(K)) − t ≤ 0, i = 1, . . . , p

(8)

which we may solve via a SQP method. In the next section we will discuss
how this should be organized, and that the jet information may be computed
efficiently. Local convergence of this approach will be assured under the
following hypothesis

(vii) f ′
K(K̄, ω̄1), . . . , f

′
K(K̄, ω̄p) are linearly independent

because this guarantees that program (8) satisfies the linear independence
constraint qualification hypothesis (LICQ).

7

4 Solving with SQP

4.1 Quadratic tangent subproblem

In this section we assume that for K in a neighborhood of K̄, the set
{ω1(K), . . . , ωp(K)} is available. The computation of this set will be dis-
cussed in Section 5.1.

In order to derive the tangent quadratic program for (8), let us write
Gi(K, t) = f (K,ωi(K)) − t, F (K, t) = t. The Lagrangian of (8) is then

L(K, t; τ) = F (K, t) +

p
∑

i=1

τ iGi(K, t),

so that

L′
K(K, t; τ) =

p
∑

i=1

τ i (f ′
K (K,ωi(K)) + f ′

ω (K,ωi(K))ω′
i(K))

=

p
∑

i=1

τ if ′
K (K,ωi(K))

using condition (v) above. Similarly,

L′
t(K, t; τ) = 1 −

p
∑

i=1

τ i.

The second-order elements are L′′
Kt (K, t; τ) = 0, L′′

tt (K, t; τ) = 0, and

L′′
KK(K, t; τ) =

p
∑

i=1

τ i[f ′′
KK (K,ωi(K))

+f ′
ω (K,ωi(K))ω′′

i (K)

+f ′′
ωK (K,ωi(K))ω′

i(K)⊤]

=

p
∑

i=1

τ i
[

f ′′
KK (K,ωi(K)) + f ′′

ωK (K,ωi(K))ω′
i(K)⊤

]

,

again using condition (v). Differentiating (v) gives

0 = f ′′
ωK (K,ωi(K)) + f ′′

ωω (K,ωi(K))ω′
i(K),

which allows us to express ω′
i(K) through derivatives of f . Altogether,

L′′(K, t; τ) =

[

L′′
KK(K, t; τ) 0

0 0

]

8

with

L′′
KK(K, t; τ) =

p
∑

i=1

τ i[f ′′
KK (K,ωi(K))

− f ′′
ωK (K,ωi(K)) f ′′

ωω (K,ωi(K))−1 f ′′
ωK (K,ωi(K))⊤].

The tangent quadratic program is now

minimize δt+ 1
2
δK⊤L′′

KK(K, t; τ)δK

subject to f (K,ωi(K)) + f ′
K (K,ωi(K))⊤ δK − t− δt ≤ 0,

i = 1, . . . , p
δt ∈ R, δK ∈ Rm2×p2

(9)

4.2 First and second derivative formulas

We first recall some useful results from matrix perturbation theory, concern-
ing the first derivatives of a non-degenerate eigenvalue and an associated
eigenvector. General formulae may be found in [17]. We specialize to the
case of a Hermitian matrix depending on real parameters: given A(u), a
n× n complex Hermitian matrix depending smoothly on u ∈ Rp, we denote
by λ1(u) ≥ · · · ≥ λn(u) the eigenvalues of A(u), and by

(

q1(u), . . . , qn(u)
)

an
orthonormal basis of eigenvectors, such that

A(u) = Q(u)Λ(u)Q(u)H,

Λ(u) = diag
(

λ1(u), . . . , λn(u)
)

and

Q(u) =
[

q1(u), . . . , qn(u)
]

.

For a fixed k and a given u0 ∈ Rp, under the assumption that λk(u0) is a
simple (non-degenerate) eigenvalue of A(u0), λk and qk are differentiable at
u0, and for all δu in Rp, we have

λ′k(u0).δu = qk(u0)
H

(

A′(u0).δu
)

qk(u0)

q′k(u0).δu =

n
∑

i=1
i6=k

qi(u0)
H

(

A′(u0).δu
)

qk(u0)

λk(u0) − λi(u0)
qi(u0)

Notice from the second equality that q′k(u0).δu is orthogonal to the eigen-
vector qk(u0).

Furthermore we derive from these expressions that λk is twice differen-
tiable at u0, and for all δu1, δu2 in Rp, dropping the dependency on u0 for
the right hand side terms, we get

9

λ′′k(u0).(δu1, δu2) = qH
k (A′′.(δu1, δu2)) qk

+ 2 Re

n
∑

i=1
i6=k

qH
k (A′.δu1) qiq

H
i (A′.δu2) qk

λk − λi

.

We specialize to the case of f(K,ω), the squared maximum singular value
of the transfer matrix T (K,ω). Then u = (K,ω) and A(u) = A(K,ω) =
T (K,ω)HT (K,ω), and f = λ1 ◦ A.

We note eigenvalues of T (K,ω)HT (K,ω) as (λi)1≤i≤m1
and an orthonor-

mal basis of associated eigenvectors as (qi)1≤i≤m1
. We drop the dependency

on K and ω for ease of notation. We assume that λ1 > λ2 ≥ λ3 ≥ · · · ≥ λm1
.

Applying the above formulae gives:

f ′
K(K,ω).δK = 2 Re

(

qH
1 T

H(T ′
K .δK)q1

)

f ′
ω(K,ω) = 2 Re

(

qH
1 T

HT ′
ωq1

)

f ′′
KK(K,ω).(δK1, δK2) =

2 Re

[

qH
1

(

(T ′
K .δK2)

HT ′
K .δK1 + THT ′′

KK.(δK1, δK2)
)

q1

+

m1
∑

i=2

qH
1

(

THT ′
K .δK1 + (T ′

K .δK1)
HT

)

qiq
H
i

(

THT ′
K .δK2 + (T ′

K .δK2)
HT

)

q1

λ1 − λi

]

f ′′
ωω(K,ω) = 2 Re

[

qH
1

(

T ′
ω

H
T ′

ω + THT ′′
ωω

)

q1

]

+ 2

m1
∑

i=2

∣

∣

∣
qH
1

(

THT ′
ω + T ′

ω
HT

)

qi

∣

∣

∣

2

λ1 − λi

f ′′
ωK(K,ω).δK = 2 Re

[

qH
1

(

(T ′
K .δK)HT ′

ω + THT ′′
ωK .δK

)

q1

+

m1
∑

i=2

qH
1

(

THT ′
ω + T ′

ω
HT

)

qiq
H
i

(

THT ′
K .δK + (T ′

K .δK)HT
)

q1

λ1 − λi

]

10

The first and second partial derivatives of the transfer function T can be
expanded with the closed-loop state-space matrices A, B and C. Starting out
with formula (1), we derive

T ′
K .δK = T ′

K(K,ω).δK

=
(

D12 + C
(

jωIn −A
)−1

B2

)

δK
(

C2

(

jωIn −A
)−1

B +D21

)

T ′′
KK .(δK1, δK2) = T ′′

KK(K,ω).(δK1, δK2)

=
(

D12 + C
(

jωIn −A
)−1

B2

)

(

δK2C2

(

jωIn −A
)−1

B2δK1 + δK1C2

(

jωIn −A
)−1

B2δK2

)

(

D21 + C2

(

jωIn −A
)−1

B
)

T ′
ω = T ′

ω(K,ω) T ′′
ωω = T ′′

ωω(K,ω)

= −j C
(

jωIn −A
)−2

B = −2 C
(

jωIn −A
)−3

B

T ′′
ωK .δK = T ′′

ωK(K,ω).δK

= −j

(

(

D12 + C
(

jωIn −A
)−1

B2

)

δK
(

C2

(

jωIn −A
)−2

B
)

+
(

C
(

jωIn −A
)−2

B2

)

δK
(

D21 + C2

(

jωIn −A
)−1

B
)

)

Introducing the following transfer matrices

F (K,ω) =
(

jωIn −A(K)
)−1

G12(K,ω) = D12 + C(K)F (K,ω)B2

G21(K,ω) = D21 + C2F (K,ω)B(K) G22(K,ω) = C2F (K,ω)B2.

we finally get

T ′
K .δK = G12δKG21

T ′′
KK.(δK1, δK2) = G12

(

δK2G22δK1 + δK1G22δK2

)

G21

T ′
ω = −jCF 2B

T ′′
ωω = −2CF 3B

T ′′
ωK .δK = −j

(

G12δKC2F
2B + CF 2B2δKG21

)

.

Remark. Notice that the transfer matrices F , T , G12, G21 and G22 can be
reliably and efficiently evaluated at the active frequencies ω ∈ Ω(K) with a
Hessenberg method, as explained in [22]. �

Altogether, we have proved the following

11

Proposition 1 . Suppose λ1

(

T (K,ωi)
HT (K,ωi)

)

has multiplicity 1 for ev-
ery ωi ∈ {ω1(K), . . . , ωp(K)}. Then the frequency response (w1, w2) →
(z1, z2) of the plant

ẋ
z1
z2

 =

A(K) B(K) B2

C(K) D(K) D12

C2 D21 0p2×m2

x
w1

w2

 ,

can be used to compute all the jet elements of tangent program (9). Indeed,
it suffices to partition in order to get T , G12, G21 and G22:

T (K,ω) = Tw1→z1
(K, jω) G12(K,ω) = Tw2→z1

(K, jω)

G21(K,ω) = Tw1→z2
(K, jω) G22(K,ω) = Tw2→z2

(K, jω)

�

Similar formulae for the derivatives of the transfer function T are obtained
for dynamic controllers, using the substitutions (5). Proposition 1 has the
practical consequence that the jet information for (9) may be computed using
the MATLAB control tool environment. Our experience shows that this
works efficiently even for systems with several hundreds of states.

4.3 Multiple eigenvalues

The working hypothesis of the previous section was that leading eigenvalues
λ1

(

T (K,ωi(K))HT (K,ωi(K)
)

had multiplicity 1 for all frequencies in the set
{ω1(K), . . . , ωp(K)} and for all K in a neighborhood of K̄. This hypothesis
is motivated by our numerical experience, where we have never encountered
multiple eigenvalues. This is clearly in contrast with experience in pure
eigenvalue optimization problems, where multiplicity of limiting elements is
> 1 as a rule, causing failure of those numerical methods which assume
smoothness of the maximum eigenvalue function.

Nonetheless, our approach is still functional if the hypothesis of single
eigenvalues at peak frequencies is dropped. What is needed is the weaker as-
sumption that the eigenvalue multiplicities r̄i at the limit point K̄ are known
for all active frequencies ω̄i, i = 1, . . . , p. More precisely, λ1

(

T (K̄, ω̄i)
HT (K̄, ω̄i

)

has multiplicity r̄i, i = 1, . . . , p, and for K sufficiently close to K̄, we have a
mechanism to reliably guess r̄i, based solely on the information at the current
iterate K.

This situation has been discussed by several authors, see e.g. [15, 31, 32,
29]. With r̄i known, SQP can still be applied as follows. Consider X ∈ Sm1

where λ1(X) has multiplicity r. We replace the maximum eigenvalue function

12

λ1 by the average of the first r eigenvalues

λ̂r (X) =
1

r

r
∑

ν=1

λν (X) .

This function is smooth in a neighborhood of the smooth manifold

Mr = {X ∈ S
m1 : λ1(X) = · · · = λr(X) > λr+1(X)}

of Hermitian matrices X ∈ Sm1 with eigenvalue multiplicity r, and λ1 = λ̂r

on Mr. The manifold has co-dimension d := r(r+1)
2

−1 in Sm1 , and in a neigh-
borhood of X̄ may be described by d equations h1(X) = 0, . . . , hd(X) = 0.
The tangent space of Mr can be computed, see [35, 32], and an SQP ap-
proach may be derived, if hypotheses (i) and (ii) are suitably modified. For
pure eigenvalue optimization, this has been discussed in [29]. The extension
to the semi-infinite case is clear under the finiteness assumption (iii). In-
troducing natural analogues of conditions (i), (ii), see for instance [18], we
may then approach minimization of the H∞-norm along the same lines and
obtain the finite program

minimize t

subject to λ̂r̄i

(

T (K,ωi(K))HT (K,ωi(K))
)

≤ t
T (K,ωi(K))HT (K,ωi(K)) ∈ Mr̄i

i = 1, . . . , p

with decision variables (K, t). Its tangent quadratic program uses the explicit
form of the tangent space T (Mr, X) given in [35].

The case of multiple eigenvalues therefore requires two separate estima-
tion steps. As before we have to select p primary and secondary peaks. Then
we have to estimate the eigenvalue multiplicity for each T (K,ωi)

HT (K,ωi).
There exist indeed practically useful ways to estimate the limiting multiplic-
ity r̄ = r̄i of λ1 for each frequency ωi. For instance, with a small threshold
τ > 0, a guess r of r̄ could be obtained by letting

λ1 − λr < τ max{1, |λ1|}, λ1 − λr+1 ≥ τ max{1, |λ1|}.

We leave the details of this extension to the care of the reader.

4.4 Globalisation via trust-region

Independently of whether or not the eigenvalue multiplicity at the active and
nearly active frequency peaks is 1, the local program (8) remains dependent

13

on the characteristics of the local solution (K̄, t̄) of (7), because the number
p of primary and secondary peaks may vary. Using Helly type theorems, an
upper bound for p may be derived, see e.g. [18, Thm. 4.2]. For a controller
K of order k we have p ≤ (m1 + k)(p1 + k) peaks, but this is pessimistic as
a rule. In order to stabilize our method, we will therefore use a trust region
strategy.

In order to control the step quality computed at a given primal-dual
pair (K, t; τ), we use the following ℓ1-merit functions φ1 and ψ1, respectively
associated with the local program (8) and the tangent program (9);

φ1(K, t;µ) = t+
1

µ

p
∑

i=1

[f (K,ωi(K)) − t]+

ψ1(δK, δt;µ) = δt+
1

2
δK⊤L′′

KK(K, t; τ)δK+

1

µ

p
∑

i=1

[δK⊤∇f (K,ωi(K)) − δt

+ f (K,ωi(K)) − t]+.

The agreement between the actual reduction and the predicted reduction
is measured by the ratio

ρ =
φ1(K, t;µ) − φ1(K + δK, t+ δt;µ)

ψ1(0;µ) − ψ1(δK, δt;µ)
. (10)

Then the trust-region radius is managed according to the following algo-
rithm, based on a basic trust-region algorithm from [12].

14

Fix 0 < η1 ≤ η2 < 1, 0 < θ < 1.

1. Initialize. Find an initial closed-loop stabilizing controller K0. Fix t0 =
f(K0), p0 and τ0 ∈ R

p0

+ , and set counter k = 0.
2. Peak estimation. Given current Kk and τk ∈ R

pk−1

+ , estimate number
pk and positions of primary and secondary peaks {ω1(Kk), . . . , ωpk

(Kk)}.
3. Model inconsistency. If pk differs from pk−1, or if last step taken was

Cauchy step, then modify old τk ∈ R
pk−1

+ or create a new consistent
multiplier vector τk ∈ R

pk
+ .

4. Initialize Newton method. Put Kk,0 = Kk, τk,0 = τk.
Set ∆0 = 1 if k = 0 or if k ≥ 1 and Kk = KC

Otherwise, set ∆0 = ∆j+1.
Set counter j = 0.

5. Newton step. Use current iterate Kk,j, multiplier estimate τk,j and trust
region radius ∆j to solve (9) and generate Newton trial step Kk,j+1, with
associated multiplier estimate τk,j+1 ∈ R

pk

+ .
6. Decision. Compare predicted progress in the local quadratic model ψ1 to

progress in φ1 using progress ratio ρj+1 in (10). There are two cases:
Step accepted: ρj+1 ≥ η1. If even ρj+1 ≥ η2 and ‖Kk,j −Kk,j+1‖
= ∆j, then double radius ∆j+1 = 2∆j. Otherwise keep ∆j+1 = ∆j.
Put KN = Kk,j+1 and pN := f(Kk) − f(KN). Goto step 7.
Step refused: ρj+1 < η1. Put ∆j+1 = ∆j/2, increase counter j, and
go back to step 5.

7. Cauchy step. Given the current iterate Kk, compute a Cauchy step KC

away from Kk using the first-order method described in [2]. Let pC :=
f(Kk) − f(KC) ≥ 0 be first-order progress. If pN ≥ θpC let Kk+1 = KN ,
and τk+1 = τk,j+1, otherwise put Kk+1 = KC .

8. Stopping test. If accepted step Kk+1 ∈ {KN ,KC} offers no progress
over Kk, stop. Otherwise increase counter k and go back to step 2.

In the inner loop j, the penalty parameter µj for the expressions φ1, ψ1 is
initialized at j = 0 with µ0 = (‖τ1‖∞ + α)−1 and updated according to the
following rule for j ≥ 1, with a chosen constant α > 0

µj =

{

µj−1 if µ−1
j−1 ≥ ‖τj+1‖∞ + α,

(‖τj+1‖∞ + 2α)−1 otherwise,

In this way, µj < ‖τj+1‖
−1
∞ and the ℓ1 merit function ψ1 is exact (see [28]).

Notice that the trust region procedure in the inner loop j between steps 4
and 6 follows standard lines, but is based on the guess p and {ω1(K), . . . , ωp(K)}
of model (8), so a few comments are in order here. Namely, since the model
may be incorrect, the following phenomenon may be observed. The New-
ton step may be successful with regard to (8), i.e., with regard to the inner

15

loop, but may nevertheless fail when matched with reality in step 7. This
is when the first order step KC takes over. In the worst case, our method
therefore converges with the speed of the underlying first-order technique [2].
Alternative first-order methods which could be used instead are for instance
[33, 27, 4, 3].

A second phenomenon, which also arises due to the necessity to guess p,
is addressed in step 3. It may happen that the new Kk+1 ∈ {KN , KC} is no
longer consistent with the old model used in the previous step, because the
number p had to undergo a change, or because a first-order step KC had to
be taken. The multiplier estimate τk+1 = τk,j+1 from the last instance of step
6 is then of little use. We then restart multipliers afresh, or we recycle the
old ones.

Finally, when p and ωi(K) have been estimated correctly, the quadratic
model will ultimately produce steps with quadratic progress. This means
the test in step 8 will ultimately accept the Newton step, showing that our
method has a fair chance to give local quadratic convergence.

Notice that two kinds of stopping tests are needed. We have to apply a
standard second order test in order to halt the inner loop j if too small a
trust region radius (indicating failure) arises. But even when the inner loop
j is stopped with a successful step KN , the first-order step KC may override
this decision in cases where the model was incorrect. It may even happen
that the Newton model alerts a local minimum (KN = Kk), but KC allows
to decrease the function value further. These cases are covered by the test
in step 8.

5 Technical aspects

5.1 Identifying peak frequencies

It is important to observe that our approach differs substantially from stan-
dard semi-infinite programming methods in so far as we have a highly effi-
cient procedure to evaluate the H∞ norm of the transfer channel at a fixed
closed-loop stabilizing controller K ∈ R(m2+k)×(p2+k).

Computing peak frequencies can be based on a classical algorithm for
estimating the L∞ norm of a transfer matrix G(s) = D + C(sI − A)−1B
explained in detail in [9]; see also the variations in [9, 11, 16]. This algorithm
detects in the first place the peak frequencies Ω(K), but may also be used
to estimate secondary peaks. Its basic version is the following:

Computing ‖G‖∞

16

1. Initialization. Find initial γ such that σ(D) ≤ γ ≤ ‖G‖∞.
Fix tolerance ǫ > 0.

2. Step. For current γ, find the frequency intervals I1, . . . , Iℓ
where σ(G(jω)) > γ. If none is found, return the current γ.

3. Update. Otherwise let ωk be the midpoint of Ik. Update
γ+ = (1 + ǫ) maxk=1,...,ℓG(jωk). Go back to step 2.

The returned value γ satisfies γ ≤ ‖G‖∞ < (1 + ǫ)γ on exit, which guaran-
tees a relative tolerance ǫ for ‖G‖∞ as well as for the positions of the peak
frequencies. Secondary peaks may be estimated in several ways.

A first idea is to detected them on the way. Each interval Ik occurring
in step 2 above contains one or several primary or secondary peaks. If an
interval Ik at level γ does not have a successor at level γ+, we conclude
that a secondary peak ωi ∈ Ii with f(K,ωi) ∈ [γ, γ+) has been left behind.
Fixing a threshold α ∈ (0, 1), we keep those secondary peaks ωi with value
f(K,ωi) > α‖G‖∞. Since the values and slopes of the curve ω 7→ f(K,ω) at
the endpoints of the Ik are known, and since the peak value is in the range
[γ, γ+), a polynomial estimation of the ωi is usually quite accurate.

A second more direct way to estimate secondary peaks is the following:
As soon as the above algorithm is stopped at the final γ, the imaginary
eigenvalues of H(γ) indicate primary peaks. After fixing the threshold αγ,
we keep those complex eigenvalues λ of H(γ) which lie in the strip αγ ≤
Reλ < γ, and choose ω = Reλ as our set of secondary peaks. This method
is elegant as it also allows to estimate p very reliably.

It is clear that the above methods can be combined, and more sophisti-
cated ways to estimate secondary peaks can be imagined. However, it should
be maintained that knowing ωi(K) to a high precision if f(K,ωi(K)) < f(K)
is not necessary, as the constraint is currently inactive. The closer the sec-
ondary peaks come to being active, the higher the precision to which they
are computed.

Detecting intervals Ik where σ(G(jω)) > γ is based on the Hamiltonian
matrix

H(γ) =

(

A 0
0 −A⊤

)

−

(

0 B
C⊤ 0

) (

γI D
D⊤ γI

)−1 (

C 0
0 −B⊤

)

.

We use the fact that

Lemma 3 . γ is a singular value of G(jω) if and only if jω is an eigenvalue
of H(γ).

17

Remark. Our approach is robust with respect to the estimation of the
cardinality p of the unknown set Ω(K̄). If we overestimate p, we create a
program (8), where some constraints remain inactive near K̄, a situation
which is automatically dealt with by the SQP solver. What is needed to
justify this situation theoretically is an implicit function for any of these
additional secondary peaks. That may be assured by extending conditions
(i) and (ii) to secondary peaks. �

5.2 Stopping criteria

We implemented two stopping tests in order to check convergence. The first
of them checks criticality of the iterate (Kk, tk) with multipliers τk, through
the absolute test

‖L′
(K,t)(Kk, tk; τk)‖ < ε1,

where ‖ · ‖ is a norm on Rm2×p2+1.
The second stopping condition checks the relative step length on the

decision variables

‖(Kk, tk) − (Kk−1, tk−1)‖ = ‖(δK, δt)‖ < ε2(1 + ‖(Kk−1, tk−1)‖)

As some SQP iterates may become infeasible for problem (8), we also
check if f(K,ωi(K))− t < ε for all i = 1, . . . , p. The algorithm stops as soon
as the current iterate is feasible and one of the stopping tests is satisfied.

6 Numerical results

The results presented here were obtained with the algorithm described in
section 4.4. The plants are taken from [23], and the acronyms refer to that
reference and allow to retrieve the data from the literature.

At every iteration, Newton and Cauchy steps are generated, and the one
giving best progress is performed. In order to initialize the method, a closed-
loop stabilizing controller is computed in the initial phase (step 1) of the
algorithm. This first stage uses first-order nonsmooth techniques for mini-
mizing the closed-loop spectral abscissa, as described in [8]. Alternatively,
derivative-free methods have been successfully used for stabilization (see [1])
if the controller size is not too large. If no prior information on K is avail-
able, we start this preliminary stabilization phase at K = 0. Then the initial
multipliers for SQP are set to τ i

0 = 1
p

for i = 1, . . . , p.

Test example AC7 (transport airplane from [23]) has been given spe-
cial attention, because it is possible to visualize iterates in controller space

18

(Figure 2). This example highlights the benefits of the second order al-
gorithm (denoted by NS2) in terms of convergence speed, compared to
the nonsmooth first-order method from [2] for H∞ synthesis (denoted by
NS1). As required in step 1, a closed-loop stabilizing static controller
K0 = [4.5931 1.2164] is first computed. The initial closed-loop H∞ per-
formance is ‖Tw→z(K0)‖∞ = 1.4614, which after optimization is reduced to
the optimal value ‖Tw→z(K̄)‖∞ = 6.5091 · 10−2.
Table 1 shows that the gain of the second-order algorithm NS2 over the
existing method NS1 is significant in terms of the number of iterations and
CPU.

Alg. iterations CPU H∞ optimality final
Cauchy Newton time (s) norm criteria |Ω|

NS1 434 0 95.42 6.5098 · 10−2 −9.7008 · 10−6 2
NS2 2 11 12.23 6.5091 · 10−2 9.4168 · 10−6 2

Table 1: H∞ synthesis: transport airplane (AC7)

Notice that the optimality criteria for the first and second order methods
are different: a nonpositive optimality function for NS1 (see [2] for details),
and the norm of the Lagrangian gradient for NS2 (as defined in section 5.2).

The resulting controllers are respectively KNS1 = [2.0331 1.8446 · 10−3]
and KNS2 = [2.0330 1.9655 · 10−3]. Both KNS1 and KNS2 have two active
frequencies. In the case of KNS2 these are ω1 = 1.9067 and ω2 = 1.3057·10−1,
in rad.s−1, with almost linearly dependent gradients

f ′
K(KNS2, ω1) =

[

3.2855 · 10−3

−4.6984 · 10−3

]

,

f ′
K(KNS2, ω2) =

[

−3.9785 · 10−3

5.6738 · 10−3

]

.

Figure 1 quantifies the convergence rates. Our second-order algorithm
(NS2) starts with two Cauchy steps, then SQP takes over and converges
superlinearly within only 11 Newton iterations. In contrast, with Cauchy
steps only (NS1), a slow first-order convergence occurs. The iterates and
contour lines of the H∞ norm are drawn in Figure 2.

Table 2 shows various other tests from [23], illustrating that the second-
order method can speed up convergence by decreasing the number of itera-
tions. The extra work needed for a second-order iteration, that is, defining
the tangent quadratic program (9), locating peak frequencies, and comput-
ing first and second derivatives to solve it, is usually compensated by the
reduction of the number of steps. For plants where the first-order method
gives little progress and iterates many times (like AC7 or HE2), the gain is

19

50 100 150 200 250 300 350 400
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

iteration

AC7 : convergence rate estimation for NS1

||K

k+1
−K

NS1
|| / ||K

k
−K

NS1
||

||K
k+1

−K
NS1

|| / ||K
k
−K

NS1
||2

2 4 6 8 10 12
10

−3

10
−2

10
−1

10
0

10
1

iteration

AC7 : convergence rate estimation for NS2

||K

k+1
−K

NS2
|| / ||K

k
−K

NS2
||

||K
k+1

−K
NS2

|| / ||K
k
−K

NS2
||2

Figure 1: Convergence rates of NS1 and NS2 for AC7. NS1 shows linear
convergence with rate close to 1 (left). NS2 gives quadratic convergence
(right).

AC7 : H∞ contour levels and NS1 iterates

K
1

K
2

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

1.2

AC7 : H∞ contour levels and NS2 iterates

K
1

K
2

1 2 3 4 5

0

0.2

0.4

0.6

0.8

1

1.2K
0

K
NS1

K
0

K
NS2

Figure 2: Iterates in controller space for NS1 (left) and NS2 (right). NS2 is
significantly faster despite the change of peaks caused by the non-smoothness.

dramatic. Other examples like REA3 show less significant gain or no gain at
all, (AC6, AC8) in cases where no superlinear convergence occurs. Nonethe-
less, attempting second order steps is generally beneficial, because the final
precision is improved (AC10).

An interesting case highlighting the importance of the final precision is
the benchmark study Boeing 767 under flutter condition, which we have
tested with two different scenarios, labeled AC10 and AC10∗. In a first test,

20

plant n m2 p2 alg. iter CPU (s) H∞ |Ω(K)|

AC6 7 2 4 NS1 79 30.28 4.1140 2
NS2 25 41.45 4.1140 2

AC7 7 1 2 NS1 434 95.42 6.5098 · 10−2 2
NS2 13 12.23 6.5091 · 10−2 2

AC8 9 1 5 NS1 14 23.50 2.0050 4
NS2 9 37.20 2.0050 4

AC10 55 2 2 NS1 74 206.16 1.3244 · 101 2
NS2 35 187.47 1.3236 · 101 5

AC10∗ 55 2 2 NS1 82 762.65 1.3251 · 101 1
NS2 71 877.18 1.3237 · 101 5

HE2 4 2 2 NS1 746 196.20 4.2495 2
NS2 12 14.67 4.2492 2

REA3 12 1 3 NS1 23 14.18 7.4251 · 101 1
NS2 9 11.06 7.4251 · 101 1

Table 2: H∞ synthesis: comparison of NS1 and NS2 on various plants.
AC stands for aircraft models, HE for a helicopter model, and REA for a
chemical reactor model.

AC10, model (3) is used. Here the first-order method NS1 converges after
74 iterates. The second order method NS2 needs 35 steps and converges

Alg. iterations CPU H∞ optimality final
Cauchy Newton time (s) norm criteria dist

NS1 74 0 206.16 1.3244 · 101 −5.4287 · 10−2 3.4000 · 10−5

NS2 28 7 187.47 1.3236 · 101 1.1926 · 10−6 3.3987 · 10−5

Table 3: Comparison of NS1 and NS2 for large scale example Boeing 747
under flutter condition (AC10). Column ’dist’ shows final distance to insta-
bility.

quadratically. Despite the higher cost for setting up and computing second
order steps, this leads to a better CPU. What is more important in this ex-
ample, however, is that the second order stopping test is much more stringent
(second column from the right in Table 3) than for the first order method.
This is particularly significant for the Boeing 767 example, because iterates
of both NS1 and NS2 get extremely close to the hidden boundary of the
stability region. The rightmost column of Table 3 gives the distance to in-
stability of the two solutions, and iterates on the way have approximately
the same distance. For NS1 it is therefore impossible to decide whether the
optimal solution is strictly inside or on the boundary of the stability region,
because the final precision (the size of the steps before stopping) is com-
parable in magnitude to the distance to instability. In contrast, for NS2,
the higher precision of the stopping test allows to conclude that the local
minimum of NS2 is indeed inside the stability region. In this example the
NS1 solution has only two active peaks, while NS2 finds 5 peaks, which

21

gives further evidence that NS1 indeed fails to converge, (even though the
solution is still reasonable from a control point of view).

In this study the stability region turns out extremely narrow, which ex-
plains numerical difficulties with this example in the past. We have therefore
performed a second test, labeled AC10∗, where a stabilizing channel as in (4)
is added to the objective (3). Not surprisingly, as the transfer channel is now
much larger, this almost doubles CPU times, even though the number of steps
is practically the same. The controllers obtained are fairly similar to those
obtained for AC10, but with AC10∗ closed-loop stability of the limit K̄ can
now be certified. In the numerical testing the parameter ǫ in (4) was chosen
such that for the initial iterate K0, ‖Tw→z(K0)‖

2
∞ = 4ǫ‖(sI −A(K0))

−1‖2
∞,

which gave ǫ = 2.3150 · 10−4.
We mention that adding the stabilizing channel does not resolve the in-

trinsic difficulty of this example, caused by the fact that the objective func-
tion in (3) or (4) is only defined on a narrow region.

7 Conclusion

We have developed and tested a second-order method to compute static
and reduced-order H∞-controllers and more general synthesis problems with
structural constraints on the controller. Our approach avoids the use of Lya-
punov variables and therefore leads to small or medium size optimization
programs even for large systems (AC10 with 55 states). We use a method-
ology from semi-infinite programming to obtain a local nonlinear program-
ming model and apply a trust region SQP method. A first-order nonsmooth
spectral bundle method is used to initialize the second-order algorithm in
the neighbourhood of a local solution. Our numerical testing indicates that
speed of convergence and numerical reliability may be improved by using the
second-order method.

References

[1] P. Apkarian and D. Noll. Controller design via nonsmooth multi-
directional search. SIAM Journal on Control and Optimization,
44(6):1923–1949, 2006.

[2] P. Apkarian and D. Noll. Nonsmooth H∞ synthesis. IEEE Transactions
on Automatic Control, 51(1):71–86, 2006.

22

[3] P. Apkarian and D. Noll. Nonsmooth optimization for multidisk H∞

synthesis. European Journal of Control, 12(3):229–244, 2006.

[4] P. Apkarian and D. Noll. Nonsmooth optimization for multiband fre-
quency domain control design. Automatica, 43(4):724–731, 2007.

[5] P. Apkarian, D. Noll, J.-B. Thevenet, and H. D. Tuan. A spectral
quadratic SDP method with applications to fixed-order H2 and H∞

synthesis. European Journal of Control, 10(6):527–538, 2004.

[6] P. Apkarian and H. D. Tuan. Robust control via concave minimization —
local and global algorithms. IEEE Transactions on Automatic Control,
45(2):299–305, 2000.

[7] V. Balakrishnan, S. Boyd, and S. Balemi. Branch and bound algorithm
for computing the minimum stability degree of parameter-dependent
linear systems. International Journal of Robust and Nonlinear Control,
1(4):295–317, 1991.

[8] V. Bompart, P. Apkarian, and D. Noll. Nonsmooth techniques for stabi-
lizing linear systems. In Proc. American Control Conf., New York, July
2007.

[9] S. Boyd and V. Balakrishnan. A regularity result for the singular val-
ues of a transfer matrix and a quadratically convergent algorithm for
computing its L∞-norm. System and Control Letters, 15(1):1–7, 1990.

[10] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix
inequalities in system and control theory, volume 15 of SIAM Studies in
Applied Mathematics. SIAM, Philadelphia, 1994.

[11] N. A. Bruinsma and M. Steinbuch. A fast algorithm to compute theH∞-
norm of a transfer function matrix. System Control Letters, 14(5):287–
293, 1990.

[12] A. Conn, N. Gould, and Ph. Toint. Trust-Region Methods. MPS-SIAM
Series on Optimization, Philadelphia, 2000.

[13] B. Fares, P. Apkarian, and D. Noll. An augmented Lagrangian method
for a class of LMI-constrained problems in robust control. International
Journal on Control, 74(4):348–360, 2001.

[14] B. Fares, D. Noll, and P. Apkarian. Robust control via sequential
semidefinite programming. SIAM Journal on Control and Optimization,
40(6):1791–1820, 2002.

23

[15] R. Fletcher. Semi-definite matrix constraints in optimization. SIAM
Journal on Control and Optimization, 23(4):493–513, 1985.

[16] P. Gahinet and P. Apkarian. Numerical computation of the L∞-norm
revisited. In Proc. IEEE Conf. on Decision and Control, pages 2257–
2258, Tucson, 1992.

[17] G. Golub and C. Van Loan. Matrix Computations. Johns Hopkins
University Press, Baltimore and London, second edition, 1989.

[18] R. Hettich and K. Kortanek. Semi-infinite programming: theory, meth-
ods, and applications. SIAM Review, 35(3):380–429, 1993.

[19] F. Jarre. An interior-point method for minimizing the maximum eigen-
value of a linear combination of matrices. SIAM Journal on Control and
Optimization, 31(5):1360–1377, 1993.

[20] H. Th. Jongen, K. Meer, and E. Triesch. Optimization theory. Kluwer
Academic Publisher, 2004.

[21] T. Kato. Perturbation theory for linear operators. Springer-Verlag, New
York, second edition, 1980.

[22] A. Laub. Efficient multivariable frequency response computations. IEEE
Transactions on Automatic Control, 26(2), 1981.

[23] F. Leibfritz. COMPleib: COnstrained Matrix-optimization Problem
library — a collection of test examples for nonlinear semidefinite pro-
grams, control system design and related problems. Technical report,
Universität Trier, 2003.

[24] F. Leibfritz and E. M. E. Mostafa. An interior-point constrained trust
region method for a special class of nonlinear semi-definite programming
problems. SIAM Journal on Optimization, 12(4):1048–1074, 2002.

[25] F. Leibfritz and E. M. E. Mostafa. Trust region methods for solving
the optimal output feedback design problem. International Journal of
Control, 76(5):501–519, 2003.

[26] A. G. J. MacFarlane and Y. S. Hung. Analytic properties of the singular
value of a rational matrix. International Journal of Control, 37(2):221–
234, 1983.

24

[27] D. Q. Mayne and E. Polak. Algorithms for the design of control systems
subject to singular value inequalities. IEEE Transactions on Automatic
Control, AC-20(4):546–548, 1975.

[28] J. Nocedal and S. Wright. Numerical optimization. Springer-Verlag,
New York, 1999.

[29] D. Noll and P. Apkarian. Spectral bundle methods for nonconvex max-
imum eigenvalue functions: second-order methods. Mathematical Pro-
gramming Series B, 104(2):729–747, 2005.

[30] D. Noll, M. Torki, and P. Apkarian. Partially augmented Lagrangian
method for matrix inequality constraints. SIAM Journal on Optimiza-
tion, 15(1):161–184, 2004.

[31] M. L. Overton. A quadratically convergent method for minimizing a
sum of Euclidean norms. Mathematical Programming, 27:34–63, 1983.

[32] M. L. Overton. On minimizing the maximum eigenvalue of a symmetric
matrix. SIAM Journal on Matrix Analysis and Applications, 9(2):256–
268, 1988.

[33] E. Polak and Y. Wardi. A nondifferentiable optimization algorithm for
the design of control systems subject to singular value inequalities over
a frequency range. Automatica, 18(3):267–283, 1982.

[34] M. G. Safonov, K. C. Goh, and J. H. Ly. Control system synthesis via
bilinear matrix inequalities. In Proc. American Control Conf., pages
45–49, 1994.

[35] A. Shapiro. First and second order analysis of nonlinear semidefinite
programs. Mathematical Programming, 77(2):301–320, 1997.

[36] J.-B. Thevenet, D. Noll, and P. Apkarian. Nonlinear spectral SDP
method for BMI-constrained problems: applications to control design.
In J. Braz, H. Araújo, A. Vieira, and B. Encarnação, editors, Infor-
matics in Control, Automation and Robotics I, pages 61–72. Springer
Verlag, 2006.

[37] H. D. Tuan, P. Apkarian, and Y. Nakashima. A new Lagrangian dual
global optimization algorithm for solving bilinear matrix inequalities.
International Journal of Robust and Nonlinear Control, 10(7):561–578,
2000.

25

