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Abstract. We present a nonsmooth optimization technique for nonconvex maximum eigenvalue
functions and for nonsmooth functions which are infinite maxima of eigenvalue functions. We prove
global convergence of our method in the sense that for an arbitrary starting point, every accumulation
point of the sequence of iterates is critical. The method is tested on several problems in feedback
control synthesis.
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1. Introduction. Eigenvalue optimization has a wide spectrum of applications
in physics, engineering, statistics, and finance. This spectrum includes composite
materials [15], quantum computational chemistry [60], optimal system design [47,
8], shape optimization [17], pole placement in linear system theory, robotics [44],
relaxations of combinatorial optimization problems [26, 39], experimental design [55,
58], and much more. Many of these problems are nonconvex, but even in the realm of
convexity, eigenvalue optimization has a prominent place. Semidefinite programming
(SDP) is an important class of convex programs, which may be solved by way of
eigenvalue optimization [48].

The idea of solving large semidefinite programs via eigenvalue optimization can
be traced back to [16, 25, 41]. It results from the insight that interior-point methods
are not the appropriate choice when problems are sizable. Due to its importance in
practice, eigenvalue optimization has been intensively studied since the 1980s. Early
contributions are Wolfe [59], Cullum, Donath, and Wolfe [16], Polak and Wardi [54],
and Fletcher [19]. Starting in the late 1980s, Overton contributed a series of papers
([49, 50], and [51] with Womersley), where in particular Newton-type methods are
discussed. Oustry [48] presents a synthesis of first and second order methods suited
for convex maximum eigenvalue functions.

Here our interest is in nonconvex eigenvalue programs, which arise frequently in
automatic control applications and especially in controller synthesis. In particular,
solving bilinear matrix inequalities (BMIs) is a prominent application, which may
be addressed via nonconvex eigenvalue optimization. In [45, 46] we have shown how
to adapt the approach of [41, 48] to handle nonconvex situations. Applications and
extensions of these ideas are presented in [4, 1, 57, 10, 5, 6].
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The goal of the present paper is twofold. In the first part we investigate how to
expand on the idea of Helmberg and Rendl’s spectral bundle method [25] in order
to deal with nonconvex eigenvalue programs. Nonconvexity requires a new approx-
imation technique, complementing the convex mechanism used in [25]. We achieve
our goal by a trust region approach or, what is equivalent, by a dual approach us-
ing proximity control. This method has antecedents in classical bundling, such as
in Lemaréchal [36, 37, 38], Lemaréchal, Nemirovskii, and Nesterov [40], and Kiwiel
[31, 32, 33]. Extensions of the convex case to include bound constraints are given in
[23].

In the second part we extend our method to address more general classes of
functions which are infinite suprema of maximum eigenvalue functions. This includes
optimization of the H∞-norm, an important application in feedback control synthesis.
Optimization of the H∞-norm has been pioneered by Polak and coworkers. See, for
instance, [42, 43, 52], and the references given there. Our own approach to optimizing
the H∞-norm is developed in [4, 1, 5].

The structure of the paper is as follows. After some preparations in sections 2–5,
the algorithm is presented in section 6. Convergence analysis follows in sections 7
and 8. The semi-infinite case, which includes optimization of the H∞-norm, is pre-
sented in section 9. While the main objective of this work is the convergence analysis
of our method, we have added several numerical tests for eigenvalue programs in sec-
tion 10 to validate the algorithm. Numerical tests for the H∞-norm and for related
problems are presented in [7].

Notation. Our terminology follows [28] and [14]. We let ‖·‖ denote the Euclidean
norm on the space R

n equipped with the scalar product x�y, while the space S
m of

m × m symmetric matrices is equipped with the scalar product X • Y = Tr(XY ).
The corresponding matrix norm is also denoted by ‖ · ‖. For X ∈ S

m, X � 0 means
X is negative semidefinite.

2. Elements from nonsmooth analysis. Recall that the maximum eigenvalue
function λ1 : S

m → R is convex but generally nonsmooth and defined on the space
S
m of m × m symmetric or Hermitian matrices. We consider composite functions

of the form f = λ1 ◦ F , where F : R
n → S

m is a class C2 operator. Notice that
f is nonsmooth, due to nonsmoothness of λ1, and nonconvex unless F is an affine
operator. The case where F is affine and therefore f convex has been studied by
many authors [16, 25, 41]. Here our interest is focused on handling nonconvex f .

Notice that as a composite function, f has a favorable structure. In particular,
the Clarke subdifferential [14] is given by the chain rule

∂f(x) = F ′(x)�∂λ1 (F (x)) ,

where ∂λ1(X) is the usual subdifferential of convex analysis at X ∈ S
m, and where

F ′(x) is the derivative of F , F ′(x)� its adjoint, mapping S
m back into R

n. Recall that
λ1 is itself highly structured, as it is the support function of the convex compact set

G = {G ∈ S
m : G � 0,Tr(G) = 1} .

That means λ1(X) = max{G •X : G ∈ G}, and therefore (cf. [28, I, sect. 5.1, p. 275])

∂λ1(X) = {G ∈ G : G •X = λ1(X)}.
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3. First local model. Consider the minimization of f = λ1 ◦ F over R
n and

suppose x ∈ R
n is the current iterate. In order to generate a descent step from x to

y, we may consider the following convex model of f around x:

φ(y;x) = λ1 (F (x) + F ′(x)(y − x)) ,(1)

where y �→ F (x) + F ′(x)(y − x) is the first order affine approximation of F (y) in a
neighborhood of x. Clearly φ(x;x) = f(x), and f = φ in those cases where F itself
is affine (see, e.g., [16, 48, 25]). Taylor’s theorem suggests that φ(y;x) ≈ f(y) for y
sufficiently close to x. This observation is made precise by the following.

Proposition 1. For every bounded set B ⊂ R
n there exists a constant L > 0

such that

|f(y) − φ(y;x)| ≤ L‖y − x‖2(2)

for all x, y ∈ B.
Proof. Notice that for any given matrices A,E ∈ S

m, the estimate

λm(E) ≤ λ1(A + E) − λ1(A) ≤ λ1(E)

is satisfied. This is also known as Weyl’s theorem. Now as F is of class C2, expanding
at x ∈ B gives F (y) = F (x) + F ′(x)(y − x) + R(y;x) with ‖R(y;x)‖ ≤ L‖y − x‖2

for some constant L > 0 and all x, y ∈ B. Using X = F (x), D = F ′(x)(y − x), we
have f(y) = λ1 (X + D + R(y;x)). We now apply Weyl’s theorem with A = X + D,
E = R(y;x), which gives

|f(y) − φ(y;x)| = |λ1(X + D) − λ1(X + D + R(y;x))|

≤ max {|λ1 (R(y;x))| , |λm (R(y;x)|}

≤ ‖R(y;x)‖ ≤ L‖y − x‖2

for all x, y ∈ B. That proves the claim.

4. Second local model. Along with (1) we consider a second local model of f
in a neighborhood of the current iterate x, which we update recursively. Notice that

φ(y;x) = max {G • [F (x) + F ′(x)(y − x)] : G ∈ G} ,

where G = {G ∈ S
m : Tr(G) = 1, G � 0} as before. This suggests the following ap-

proximation φk(y;x) of f , where G is replaced by a smaller and easier-to-compute
subset Gk ⊂ G. We will generate a sequence Gk ⊂ G of such approximations and let

φk(y;x) = max {G • [F (x) + F ′(x)(y − x)] : G ∈ Gk} .(3)

Clearly φk ≤ φ. The idea is that we generate descent steps for the φk(·;x), which will
ultimately lead to descent in f at x, as the agreement between f and φk improves at
each step k. The minimal requirement for Gk is the following and is obvious.

Lemma 2. Suppose Gk contains a subgradient of the form G = ee� ∈ G, where e
is a normalized eigenvector associated with λ1 (F (x)). Then φk(x;x) = f(x).

5. Proximity control. Let x be our current iterate. In order to generate a new
trial step, we use the current model φk(·;x) and compute the solution yk+1 of the
unconstrained optimization program,

minimize φk(y;x) + τk
2 ‖y − x‖2, y ∈ R

n,(4)

where τk ≥ 0 is the proximity parameter, and where the term τk
2 ‖y − x‖2 is referred
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to as the proximity control. It is well known (see, e.g., [28, II, Prop. 2.2.3, p. 291])
that (4) is equivalent to a trust region program of the form

minimize φk(y;x), y ∈ R
n

subject to ‖y − x‖ ≤ tk,
(5)

where tk > 0 is the trust region radius. Indeed, minima of (5) and minima of (4) are
in one-to-one correspondence in the following sense: If yk+1 is a minimum of (4) for
fixed τk > 0, then yk+1 also solves (5) with tk := ‖yk+1−x‖ and associated multiplier
τk > 0. Conversely, if yk+1 solves (5) and if the associated multiplier τk is strictly
positive, then yk+1 solves (4) with that proximity parameter τk > 0. The case τk = 0
in (4) obviously corresponds to those cases in (5) where the trust region constraint is
inactive.

With the models φ and φk we introduce two levels of approximation of f , so it
is not surprising that two mechanisms to adjust the degree of exactness are applied.
First, in order to control the agreement between f and φ, we need to adjust tk at each
step, which is done indirectly via the management of τk. If the agreement between
f and φ is good, we increase tk, which corresponds to decreasing τk, while we have
to reduce tk when agreement is bad, achieved indirectly by increasing τk. Second, we
update Gk into Gk+1 after each trial yk+1 in order to drive φk closer to φ, and thereby
also closer to f . We use the standard terminology in nonsmooth optimization. If the
solution yk+1 of (4) is not used as the next iterate, we call it a null step. If yk+1 is
accepted and becomes the next iterate x+, we speak of a serious step.

In order to test the quality of the trial steps yk+1, we use the quotient

ρk =
f(x) − f(yk+1)

f(x) − φk(yk+1;x)
.(6)

Fixing constants 0 < γ < Γ < 1, we say that f and φk(·;x) are in good agreement
when ρk > Γ, and we say that the agreement is bad if ρk < γ. The bad case includes,
in particular, situations where ρk ≤ 0. Since always f(x) − φk(y

k+1;x) > 0, unless
0 ∈ ∂f(x), we deduce that ρk ≤ 0 corresponds to cases where f(x)−f(yk+1) ≤ 0, that
is, where the proposed step yk+1 is not even a descent step for f . In our algorithm
we use the following rule: yk+1 is accepted as soon as ρk ≥ γ, i.e., as soon as the step
is not bad. The question is then what we shall do when agreement between f and φk

is bad, i.e., when ρk < γ.

Here we compute a second test parameter,

ρ̃k :=
f(x) − φ(yk+1;x)

f(x) − φk(yk+1;x)
,

and we compare it to a second control parameter γ̃, where γ < γ̃ < 1
2 . We then have

two possibilities. If ρk < γ and also ρ̃k < γ̃, then we do not change τk, but improve
the approximation Gk+1 so that φk+1 gets closer to φ. On the other hand, if ρk < γ,
but ρ̃k ≥ γ̃, then φ and f are not in good agreement, while φk is already close to φ.
Driving φk even closer to φ in that case alone will therefore not improve the situation.
Here we have to decrease the trust region radius tk, or what comes down to the same,
increase the proximity control parameter τk. While doing this, we still update Gk to
a better Gk+1, i.e., we still let φk approach φ, so this process is always applied.
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6. Aggregate subgradients. As our convergence analysis will show, the ap-
proximations Gk ⊂ G need only satisfy the following three conditions:

(G1) G0 = e0e
�
0 ∈ Gk for some normalized eigenvector e0 associated with λ1 (F (x)).

(G2) Gk+1 = ek+1e
�
k+1 ∈ Gk+1 for some normalized eigenvector ek+1 associated

with λ1

(
F (x) + F ′(x)(yk+1 − x)

)
.

(G3) G∗
k ∈ Gk+1 for some of the G∗

k ∈ Gk, where the maximum φk(y
k+1;x) is

attained, and which satisfies 0 = F ′(x)�G∗
k + τk(y

k+1 − x).
Below we will discuss practical choices of the sets Gk, combining ideas from [25], [48],
[24], and [45]. We let Gk consist of sets of the form

αkGk + QkYkQ
�
k ,(7)

where Yk ∈ S
rk has Yk � 0, αk + Tr(Yk) = 1, 0 ≤ αk ≤ 1, where Qk is an m × rk

matrix whose rk ≥ 1 columns form an orthogonal basis of an invariant subspace of
F (x) + F ′(x)(yk+1 − x), and where Gk ∈ G is the aggregate subgradient. We assume
that at least one normalized eigenvector ek associated with the maximum eigenvalue
λ1

(
F (x) + F ′(x)(yk − x)

)
is in the span of the columns of Qk, and moreover, that e0

is in the span of the columns of Qk at all times. The idea is to build the new set Gk+1

along the same lines, using an updating strategy, which we now explain.
Let yk+1 be the solution of program (4), obtained with the help of Gk, and suppose

it is a null step. The necessary optimality condition gives 0 ∈ ∂φk(y
k+1;x)+τk(y

k+1−
x). Due to the structure of φk and (7), this means there exist G∗

k ∈ Gk such that

0 = F ′(x)�G∗
k + τk(y

k+1 − x), G∗
k = α∗

kGk + QkY
∗
k Q

�
k ,(8)

where 0 ≤ α∗
k ≤ 1, Y ∗

k � 0, and α∗
k + Tr(Y ∗

k ) = 1. Now the simplest method is to let

Gk+1 = α∗
kGk + QkY

∗
k Q

�
k ,(9)

the new aggregate subgradient. Helmberg and Rendl [25] use a refinement of (9),
which is suited for large problem size: Let Y ∗

k = PDP� be a spectral decomposition
of the rk × rk matrix Y ∗

k . Decompose P = [P1P2] with corresponding spectra D1

and D2 so that P1 contains as columns those eigenvectors associated with the large
eigenvalues of Y ∗

k , and P2 are the remaining columns. Now put

Gk+1 =
(
α∗
kGk + QkP2D2P

�
2 Q�

k

)
/ (α∗

k + Tr(D2)) ,(10)

the new aggregate subgradient, which is an element of G. In this way only the minor
part of Y ∗

k is kept in the aggregate subgradient. The dominant part of Y ∗
k is retained

in the next eigenbasis by letting QkP1 be part of Qk+1. Moreover, in view of axiom
(G2), one eigenvector ek+1 of the maximum eigenvalue of F (x) + F ′(x)(yk+1 − x) is
computed and included in Qk+1. In order to guarantee axiom (G1), we also keep at
least one normalized eigenvector e0 associated with the maximum eigenvalue of F (x)
in Qk+1.

Altogether, Gk+1 consists of all αGk+1 + Qk+1Yk+1Q
�
k+1, where 0 ≤ α ≤ 1,

Yk+1 � 0, and α + Tr(Yk+1) = 1, and where Qk+1 has the properties above. For this
construction we have the following.

Lemma 3. The sets Gk so defined satisfy the rules (G1)–(G3). In particular,
φk(x;x) = f(x), φk+1(y

k+1;x) = φ(yk+1;x), φk+1(y
k+1;x) ≥ φk(y

k+1;x), and con-
dition (8) hold for every k.

Remark. In a traditional bundle method we would refer to gk = F ′(x)�Gk as the
aggregate subgradient. Here we use the term aggregate for both gk and Gk because
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there is no risk of ambiguity. But are both elements really needed? The authors of
[25] point out that storing ḡk is cheaper than storing Ḡk, so naturally they work in
g-space and not in G-space.

Now observe an important difference of our present case with the convex case in
[25], where F ′(x)∗ = A∗ is independent of x. Since our F ′(x)∗ depends on x, as soon
as a serious step x → x+ is taken, gk = F ′(x)∗Gk is no longer useful at x+, because
it is no longer a subgradient of f at x+. However, Gk is still useful. It suffices to
replace gk by g+

k := F ′(x+)∗Gk, which is a subgradient for f at x+. So if we want to
“recycle” old aggregates in the next serious loop, we have to store Gk and not gk. On
the other hand, if we are happy to keep aggregates only within one single inner loop,
then we do not need Gk and our case is similar to [25].

Remark. Conditions (G1)–(G3) leave a lot of freedom for the choice of the bases
Qk. In [24] Helmberg and Oustry investigate the convex case and discuss ways to
combine their two approaches [25] and [48] into a unified method. An alternative ap-
proach is Polak and Wardi [54]. For nonconvex eigenvalue functions we have proposed
in [45, 46] an extension of Oustry’s approach.

Spectral bundle algorithm for minx∈Rn f(x).

Parameters: 0 < γ < γ̃ < Γ < 1.
0. Initialize outer loop. Find initial iterate x and compute f(x).
1. Outer loop. Stop if 0 ∈ ∂f(x) at current outer iterate x. Otherwise

goto inner loop.
2. Initialize inner loop. Let G1 ⊂ ∂λ1 (F (x)), G1 = 1

mIm, put inner
loop counter k = 1, and choose τ1 > 0. If old value for τ from previous
sweep is memorized, use it to initialize τ1.

3. Tangent program. At counter k with given τk > 0 and Gk solve

min
y∈Rn

φk(y;x) +
τk
2
‖y − x‖2.

Solution is yk+1. Find G∗
k ∈ Gk where (3) at yk+1 is attained. Write

G∗
k = α∗

kGk + QkYkQ
�
k according to (7).

4. Acceptance test. Compute f(yk+1) and check whether

ρk =
f(x) − f(yk+1)

f(x) − φk(yk+1;x)
≥ γ.

If this is the case, put x+ = yk+1 (serious step). Compute new memory
element τ+ as

τ+ =

{ τk
2

if ρk > Γ,

τk else
Then go back to step 1 to commence a new sweep of outer loop. On
the other hand, if ρk < γ, then continue inner loop with step 5.

5. Agreement test. Compute φ(yk+1;x) and control parameter

ρ̃k =
f(x) − φ(yk+1;x)

f(x) − φk(yk+1;x)
.

Put

τk+1 =

{
τk if ρk < γ and ρ̃k < γ̃,
2τk if ρk < γ and ρ̃k ≥ γ̃.

6. Aggregate subgradient. Compute new set Gk+1 according to (7),
with (G1)–(G3) satisfied. New aggregate subgradient is Gk+1 = G∗

k.
7. Inner loop. Increase counter k → k + 1 and go back to step 3.
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7. Convergence analysis of inner loop. We have to show that the inner loop
is finite, that is, finds a trial point yk+1 accepted in step 4 after a finite number k of
steps. We prove this by showing that if the inner loop turns forever, that is, ρk < γ
for all k, then 0 ∈ ∂f(x). (Since the inner loop is not entered when 0 ∈ ∂f(x), this
is an argument by contradiction.) There are two subcases to be discussed, depending
on the decision in step 5. These will be addressed in Lemmas 4 and 5.

Our first concern is when ρk < γ but ρ̃k ≥ γ̃. This is indeed the situation where
we are far from the convex case. Namely, ρ̃k ≥ γ̃ means that φk is in good agreement
with φ, but unfortunately ρk < γ says that φ is not a good model of f , which is
usually due to the fact that f is nonconvex in a neighborhood of the current x. In
consequence, φk cannot be expected to be a good model of f either. This is addressed
in step 5 of the algorithm by increasing the proximity parameter τk, which as we know
is equivalent to reducing the trust region radius. This is the only way to improve the
agreement between φ and f .

Lemma 4. Suppose the algorithm generates an infinite sequence of trial steps
yk+1 such that always ρk < γ. Then ρ̃k < γ̃ for some k0 and all k ≥ k0.

Proof. (i) Assume on the contrary that ρk < γ for all k, but at the same time
ρ̃k ≥ γ̃ for infinitely many k ∈ N. Then according to the update rule in step 5
of the algorithm, the sequence τk tends to +∞. As a consequence of the necessary
optimality condition we have 0 ∈ ∂φk(y

k+1;x) + τk(y
k+1 − x). Now observe that

due to the special form (7), the subgradients of all functions φk(·;x) are uniformly
bounded by ‖F ′(x)�‖. Given that τk → ∞, we then must have yk+1 → x. Using
τk(x− yk+1) ∈ ∂φk(y

k+1;x) calls for the subgradient inequality, which gives

τk
(
x− yk+1

)� (
x− yk+1

)
≤ φk(x;x) − φk(y

k+1;x) = f(x) − φk(y
k+1;x),

the latter by Lemma 3. In other words,

τk‖x− yk+1‖2

f(x) − φk(yk+1;x)
≤ 1.(11)

(ii) Now we expand the test parameters as follows:

ρ̃k = ρk +
f(yk+1) − φ(yk+1;x)

f(x) − φk(yk+1;x)

≤ ρk +
L‖x− yk+1‖2

f(x) − φk(yk+1;x)
(using Proposition 1)

≤ ρk +
L

τk
(using (11)).

Since τk → ∞, we deduce lim supk→∞ ρ̃k ≤ lim supk→∞ ρk ≤ γ, contradicting ρ̃k ≥
γ̃ > γ for infinitely many k.

Remark. Notice that the proof of Lemma 4 uses Lemma 3, which in turn exploits
axiom (G1). Axioms (G2) and (G3) will be needed in the next lemma.

As a consequence of Lemma 4 we see that the algorithm, when faced with the
bad case ρk < γ, will continue to increase τk, until eventually ρ̃k < γ̃, too. From some
index k0 onwards, we will then be in the first case in step 5 of the algorithm, where
the parameter τk is frozen, i.e., τk =: τ for k ≥ k0. We then have no easy argument
to deduce yk+1 → x. Here, indeed, we will have to exploit properties (G2) and (G3)
of the update rule Gk → Gk+1. We follow the line of [25, Lemma 4.2].
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Lemma 5. Let x be the current iterate and suppose the algorithm generates an
infinite sequence of trial steps yk+1, where ρk < γ for all k while ρ̃k < γ̃ for some k0

and all k ≥ k0. Then 0 ∈ ∂f(x).

Proof. (i) As we mentioned already, ρk < γ and ρ̃k < γ for all k ≥ k0 implies that
in step 5 of the algorithm, τk =: τ is frozen for k ≥ k0. A priori we therefore do not
know whether yk+1 → x, as we did in the proof of Lemma 4. This complicates the
following analysis.

(ii) Let us introduce the function

ψk(y;x) = φk(y;x) + τ
2‖y − x‖2;

then by its definition, yk+1 is the global minimum of ψk(·;x) for k ≥ k0. Let G∗
k ∈ Gk

be the subgradient where the supremum φk(y
k+1;x) is attained and which is retained

in Gk+1 in accordance with rule (G3) and also with step 3 of the algorithm. That
means

φk(y
k+1;x) = G∗

k •
[
F (x) + F ′(x)(yk+1 − x)

]
,(12)

and also

ψk(y
k+1;x) = G∗

k •
[
F (x) + F ′(x)(yk+1 − x)

]
+ τ

2‖yk+1 − x‖2.(13)

We introduce the function

ψ∗
k(y;x) = G∗

k • [F (x) + F ′(x)(y − x)] + τ
2‖y − x‖2.

Then ψ∗
k(y

k+1;x) = ψk(y
k+1;x) and

ψ∗
k(y;x) ≤ ψk+1(y;x)(14)

for k ≥ k0, because G∗
k ∈ Gk+1. We claim that

ψ∗
k(y;x) = ψ∗

k(y
k+1;x) + τ

2‖y − yk+1‖2.(15)

An easy way to see this is to observe that ψ∗
k is quadratic and expand it, using

∇ψ∗
k(y;x) = F ′(x)�G∗

k + τ(y − x) and ∇2ψ∗
k(y;x) = τI. Then clearly,

ψ∗
k(y;x) = ψ∗

k(y
k+1;x) + ∇ψ∗

k(y
k+1;x)�(y − yk+1) + τ

2 (y − yk+1)�(y − yk+1).

Formula (15) will therefore be established as soon as we show that the first order term
in this expansion vanishes. But this term is

∇ψ∗
k(y

k+1;x)�(y − yk+1)

= (F ′(x)�G∗
k)

�
(y − yk+1) + τ(yk+1 − x)�(y − yk+1)

= τ(x− yk+1)�(y − yk+1) + τ(yk+1 − x)�(y − yk+1) (using (8))

= 0.

That proves formula (15).
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(iii) From (ii) we have

ψk(y
k+1;x) ≤ ψ∗

k(y
k+1;x) + τ

2‖yk+2 − yk+1‖2 (using ψ∗
k(y

k+1;x) = ψk(y
k+1;x))

= ψ∗
k(y

k+2;x) (using (15))

≤ ψk+1(y
k+2;x) (using (14))

≤ ψk+1(x;x) (yk+2 is minimizer of ψk+1)(16)

= φk+1(x;x) ≤ φ(x;x).

We deduce that the sequence ψk(y
k+1;x) is monotonically increasing and bounded

above by φ(x;x). It therefore converges to some ψ∗ ≤ φ(x;x).

Going back to (16) with this information, we see that the term τ
2‖yk+2 − yk+1‖2

is now squeezed in between two convergent terms with the same limit ψ∗, and must
therefore tend to zero. Consequently, ‖yk+1−x‖2−‖yk+2−x‖2 also tends to 0, because
the sequence yk is bounded. (Boundedness of the yk+1 was already used in the proof
of the previous lemma and follows from the particular form (7) of the subgradients
and the fact that the sequence τk is nondecreasing and therefore bounded away from
0.)

Recalling φk(y;x) = ψk(y;x) − τ
2‖y − x‖2, we deduce, using both convergence

results, that

φk+1(y
k+2;x) − φk(y

k+1;x)

= ψk+1(y
k+2;x) − ψk(y

k+1;x) − τ
2‖yk+2 − x‖2 + τ

2‖yk+1 − x‖2 → 0.(17)

(iv) Let ek+1 be the normalized eigenvectors of F (x)+F ′(x)(yk+1−x) associated
with λ1, which we pick in step 5 of the algorithm and according to rule (G2). Then
gk = F ′(x)�ek+1e

�
k+1 is a subgradient of φk+1(·;x) at yk+1. Hence by the subgradient

inequality

φk+1(y
k+1;x) + g�k

(
y − yk+1

)
≤ φk+1(y;x).

Since φk+1(y
k+1;x) = φ(yk+1;x) by Lemma 3, respectively, rule (G2), we have the

estimate

φ(yk+1;x) + g�k
(
y − yk+1

)
≤ φk+1(y;x).(18)

Now observe that

0 ≤ φ(yk+1;x) − φk(y
k+1;x)

= φ(yk+1;x) + g�k
(
yk+2 − yk+1

)
− φk(y

k+1;x) − g�k
(
yk+2 − yk+1

)
≤ φk+1(y

k+2;x) − φk(y
k+1;x) + ‖gk‖

∥∥yk+2 − yk+1
∥∥ (using (18)),

and this term tends to 0 due to (17), because yk+2 − yk+1 → 0, and because the
sequence gk is bounded. We deduce that φ(yk+1;x) − φk(y

k+1;x) → 0.
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(v) We now show that φk(y
k+1;x) → f(x), and then of course also φ(yk+1;x) →

f(x). Assume, contrary to what is claimed, that lim supk→∞ f(x) − φk(y
k+1;x) =:

η > 0. Choose δ > 0 such that δ < (1− γ̃)η. It follows from part (iv) that there exists
k1 ≥ k0 such that

φ(yk+1;x) − δ ≤ φk(y
k+1;x)(19)

for all k ≥ k1. Using ρ̃k ≤ γ̃ for k ≥ k1 then gives

γ̃
(
φk(y

k+1;x) − f(x)
)
≤ φ(yk+1;x) − f(x)

≤ φk(y
k+1;x) + δ − f(x),(20)

which implies γ̃η ≥ η− δ. This contradicts the choice of δ and therefore shows η = 0.
(vi) Having shown φ(yk+1;x) → f(x) and φk(y

k+1;x) → f(x), we argue that
yk+1 → x. This follows from the definition of yk+1, because

ψk(y
k+1;x) = φk(y

k+1;x) + τ
2‖yk+1 − x‖2 ≤ ψk(x;x) = φk(x;x) = f(x).

Since φk(y
k+1;x) → f(x), we have indeed ‖yk+1 − x‖ → 0 by a sandwich argument.

To finish the proof, let us show that 0 ∈ ∂f(x). Notice first that the necessary
optimality condition gives 0 ∈ ∂ψk(y

k+1;x) = ∂φk(y
k+1;x) + τ(yk+1 − x), which

implies

τ(x− yk+1) ∈ ∂φk(y
k+1;x).

The subgradient inequality gives

τ(x− yk+1)�(y − yk+1) ≤ φk(y;x) − φk(y
k+1;x)

≤ φ(y;x) − φk(y
k+1;x) (using φk ≤ φ)

for every y. Passing to the limit, observing τ(yk+1−x) → 0 and φk(y
k+1;x) → φ(x;x),

we obtain the estimate

0 ≤ φ(y;x) − φ(x;x)

for every y, which by convexity of φ(·;x) implies 0 ∈ ∂φ(x;x). Since ∂φ(x;x) = ∂f(x),
we have shown 0 ∈ ∂f(x), as claimed.

Remark. Various modifications of our algorithm may be considered. For instance,
whenever a null step yk+1 is made, that is, ρk < γ, we should first check whether yk+1

gives descent in f :

f(x) − f(yk+1) ≥ δ1 > 0.(21)

If this is not the case, the trust region radius is certainly too large, so we should
increase τk right away. As presented, this will also happen, but after several null
steps, bringing φk closer to φ, until the criterion in step 4 is met.

In the same vein, even when yk+1 gives descent in f , but slightly, so that ρk > γ
fails, we may check whether

σk :=
f(x) − f(yk+1)

f(x) − φ(yk+1;x)
≥ δ2(22)
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for some 1
2 < δ2 < 1. If σk < δ2, then f and φ are not in good agreement. In this case,

our algorithm will keep τk fixed and will start driving φk closer to φ. Eventually this
will lead to a moment where ρ̃k ≥ γ̃, and then τk will be increased to 2τk. As above
one may argue that in this case we have lost time, because we have brought φk closer
to φ even though φ is too far away from f , only to notice in the end that we could
not avoid increasing τk. This loss of time and energy could be avoided by adding the
test (22). If σk < δ2, then we increase τk right away but keep incrementing φk. The
convergence analysis of this is covered by the two central lemmas of this section.

8. Convergence analysis of the outer loop. All we have to do now is piece
things together and show subsequence convergence of the sequence of serious steps xj

retained in the outer loop. We have the following.
Theorem 6. Let f = λ1 ◦ F be a maximum eigenvalue function and let x1 ∈ R

n

be such that the set {x ∈ R
n : f(x) ≤ f(x1)} is compact. Then every accumulation

point of the sequence xj of serious steps generated by the algorithm is a critical point
of f .

Proof. (i) From the previous section we know that the inner loop always ends
after a finite number of steps k with a new x+ satisfying the acceptance test, unless
we have finite termination due to 0 ∈ ∂f(x). Excluding this case, let us assume that
xj is the sequence of serious steps, satisfying the acceptance test in step 4 of the
algorithm. Since yk+1 accepted in step 4 becomes the new xj+1, that means

f(xj) − f(xj+1) ≥ γ
(
f(xj) − φkj (x

j+1;xj)
)
,(23)

where j is the counter of the outer loop, k the counter of the inner loop, and where
at the outer step j the inner loop was stopped at k = kj . Now recall from the
construction that τkj

(
xj − xj+1

)
∈ ∂φkj

(xj+1;xj). The subgradient inequality for
φkj

(·;xj) at xj+1 therefore gives

τkj

(
xj − xj+1

)�
(xj − xj+1) ≤ φkj (x

j ;xj) − φkj
(xj+1;xj) = f(xj) − φkj

(xj+1;xj),

using φkj
(xj ;xj) = f(xj). That means

τkj‖xj+1 − xj‖2 ≤ f(xj) − φkj (x
j+1;xj) ≤ γ−1

(
f(xj) − f(xj+1)

)
using (23). Summing up from j = 1 to j = J − 1 gives

J−1∑
j=1

τkj
‖xj+1 − xj‖2 ≤ γ−1

J−1∑
j=1

f(xj) − f(xj+1) = γ−1
(
f(x1) − f(xJ)

)
,

which is bounded above due to the hypothesis that {x ∈ R
n : f(x) ≤ f(x1)} is

bounded. We deduce convergence of the series

∞∑
j=1

τkj
‖xj+1 − xj‖2 < ∞.

In particular, τkj‖xj+1 − xj‖2 → 0.
(ii) Let us prove that this implies gj := τkj

(
xj − xj+1

)
→ 0, (j → ∞). Assume

on the contrary that there exists an infinite subset N of N and some μ > 0 such that
‖gj‖ = τkj‖xj − xj+1‖ ≥ μ > 0 for every j ∈ N . In tandem with the summability of
τkj

‖xj − xj+1‖2 shown in part (i) this could only mean xj − xj+1 → 0, and at the
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same time, τkj
→ ∞, j ∈ N . We now argue that there exists yet another infinite

subsequence N ′ of N with τj → ∞, (j ∈ N ′), such that for each j ∈ N ′, the doubling
rule in step 5 of the algorithm was applied at least once before the step xj+1 = ykj+1

was accepted. Indeed, to construct N ′ we let, for every j ∈ N , j′ ≤ j be that outer-
loop instant where the τ -parameter was increased for the last time before j, and we
let N ′ consist of all these j′, j ∈ N . It is possible that j′ = j, but in general we may
have j′ < j, and we know only that

2τj′−1 ≤ τj′ and τj′ ≥ τj′+1 ≥ · · · ≥ τj .

However, since τj → ∞, j ∈ N , we know that we must have τj′ → ∞, j′ ∈ N ′.
Since the doubling rule was applied at least once at the outer-loop counter j′, N ′ is
as claimed.

Let us say that for j ∈ N ′ the doubling rule was applied for the last time at
stage τkj−νj for some νj ≥ 1. That means, τkj−νj+1 = 2τkj−νj , while the τ -parameter
remained unchanged during the following inner steps before acceptance:

τkj = τkj−1 = · · · = τkj−νj+1 = 2τkj−νj .(24)

Now recall that in step 5 of the algorithm we have ρk < γ and ρ̃k ≥ γ̃ for those k
where the trial step was not accepted and the doubling rule was applied. Since this
is the case at stage kj − νj we have

ρkj−νj
=

f(xj) − f(ykj−νj+1)

f(xj) − φkj−νj
(ykj−νj+1;xj)

< γ

and

ρ̃kj−νj
=

f(xj) − φ(ykj−νj+1;xj)

f(xj) − φkj−νj (y
kj−νj+1;xj)

≥ γ̃.

By (24) we now have

1

2
τkj

(
xj − ykj−νj+1

)
∈ ∂φkj−νj (y

kj−νj+1;xj).

Using the subgradient inequality for φkj−νj
(·;xj) at ykj−νj+1 and φkj−νj

(xj ;xj) =
f(xj), we obtain

1

2
τkj

(
xj − ykj−νj+1

)� (
xj − ykj−νj+1

)
≤ φkj−νj (x

j ;xj) − φkj−νj (y
kj−νj+1;xj)

= f(xj) − φkj−νj
(ykj−νj+1;xj),

which could also be written as

τkj‖xj − ykj−νj+1‖2

f(xj) − φkj−νj (y
kj−νj+1;xj)

≤ 2.(25)

Substituting (25) into the expression for ρ̃kj−νj
and expanding gives

ρ̃kj−νj
= ρkj−νj

+
f(ykj−νj+1) − φ(ykj−νj+1;xj)

f(xj) − φkj−νj (y
kj−νj+1;xj)

≤ ρkj−νj +
L‖xj − ykj−νj+1‖2

f(xj) − φkj−νj
(ykj−νj+1;xj)

(using Proposition 1)

≤ ρkj−νj +
2L

τkj

(using (25)).
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Here Proposition 1 is applied to the set B of all xj and ykj−νj+1, j ∈ N ′, which is
bounded because ‖ykj−νj+1‖ ≤ ‖F ′(xj)�‖ due to (7), and because the serious steps
xj belong to the level set {x ∈ R

n : f(x) ≤ f(x1)}, which is bounded by hypothesis.
Since ρkj−νj < γ and L/2τkj → 0, we have lim supj→∞ ρ̃kj−νj ≤ γ in the estimate
above, contradicting ρ̃kj−νj ≥ γ̃ > γ for all j ∈ N ′.

(iii) Having shown that gj := τkj (x
j − xj+1) → 0, (j → ∞), let us argue that

every accumulation point x̄ of the sequence xj of serious steps must be a critical point.
Notice again that since {x ∈ R

n : f(x) ≤ f(x1)} is compact by hypothesis, and since
our algorithm is of descent type in the serious steps, the sequence xj is bounded.
Select a convergent subsequence xj → x̄, j ∈ N . The same argument applies to the
sequence xj+1, j ∈ N . We may therefore assume that this sequence also has a limit,
x̃. Notice that in general we might have x̃ �= x̄. Only in those cases where the τkj

,
j ∈ N , are bounded away from 0 can we conclude that xj+1 − xj → 0, j ∈ N . In
general, however, according to step 4 of the algorithm, the τ -parameter may very well
shrink to 0, and here xj − xj+1 → 0 cannot be assured.

Since gj is a subgradient of φkj
(·;xj) at xj+1 = ykj+1, we have

g�j h ≤ φkj (x
j+1 + h;xj) − φkj (x

j+1;xj)

≤ φ(xj+1 + h;xj) − φkj (x
j+1;xj) (using φkj ≤ φ)

for every test vector h. Now we use the fact that ykj+1 = xj+1 was accepted in step 4
of the algorithm, which means

γ−1
(
f(xj) − f(xj+1)

)
≥ f(xj) − φkj

(xj+1;xj).

Combining these two estimates gives

g�j h ≤ φ(xj+1 + h;xj) − f(xj) + f(xj) − φkj
(xj+1;xj)

≤ φ(xj+1 + h;xj) − f(xj) + γ−1
(
f(xj) − f(xj+1)

)
.

Passing to the limit j ∈ N and using, in the order named, gj → 0, xj+1 → x̃, xj → x̄,
and f(x̄) = φ(x̄; x̄), implies

0 ≤ φ(x̃ + h; x̄) − φ(x̄; x̄)

for every test vector h, where the last term f(xj) − f(xj+1) → 0 by monotonicity.
Choosing h = x̄− x̃ + h′ therefore implies

0 ≤ φ(x̄ + h′; x̄) − φ(x̄; x̄)

for every test vector h′ ∈ R
n, which proves 0 ∈ ∂φ(x̄; x̄). Hence also 0 ∈ ∂f(x̄).

In practical tests we observe convergence, and the theoretical possibility of a
sequence of iterates with several accumulation points never occurs. This is explained
to some extent by the following.

Corollary 7. Suppose f = λ1◦F is convex in a closed and bounded neighborhood
Ω of x∗ and that the iterates (serious steps) xj remain in Ω. Then the sequence xj

converges to some local minimum x� ∈ Ω with f(x∗) = f(x�).
Proof. As the sequence of serious steps xj satisfies the acceptance condition in

step 4 of the algorithm, we are in a situation similar to the one in the convex algorithm
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discussed in [25]. The argument presented there can be used and shows convergence
to a local minimum x� ∈ Ω.

Remark. The present trust region method should be compared to the approach
of Fuduli, Gaudioso, and Giallombardo [20, 21] for general nonsmooth and nonconvex
locally Lipschitz functions, where the authors design a trust region with the help of
the first order affine approximations a(y) = g�(y − yk+1) + f(yk+1), g ∈ ∂f(yk+1)
of the objective f at the trial points yk+1. As these affine models are not support
functions to the objective, the authors classify them according to whether a(x) > f(x)
or a(x) ≤ f(x), using this information to devise a trust region around the current x.
Their approach is certainly appealing, because it uses genuine information from the
objective f . In contrast, our method uses information from the model φ(·;x) at the
trial points yk+1.

9. Minimizing the H∞-norm. In this section we extend our algorithm to a
larger class of functions which are suprema of an infinite family of maximum eigenvalue
functions. The application we have primarily in mind is the H∞-norm, but the results
are applicable to a much larger class.

To introduce our case, we consider a parametrized family of stable linear time-
invariant dynamical systems

P (θ) :

{
ẋ = A(θ)x + B(θ)w,

z = C(θ)x + D(θ)w
(26)

with data A(θ) ∈ R
nx×nx , B(θ) ∈ R

nw×nx , C(θ) ∈ R
nx×nz , D(θ) ∈ R

nw×nz de-
pending smoothly on a decision parameter θ ∈ R

n. The transfer function of P (θ) is

G(θ, s) = C(θ) (sI −A(θ))
−1

B(θ)+D(θ). Here nx is the order of the system, x(t) its
state, nw the number of inputs, w(t) the input vector, nz the number of outputs, and
z(t) the output vector. As a typical example, in feedback control synthesis, P (θ) may
represent a closed-loop system, depending on the unknown (to be designed) feedback
controller θ. The closed-loop transfer function then depends on the decision vector θ,
which regroups the controller gains and possibly other decision parameters, e.g., from
the open-loop system [44], or scalings/multipliers in robust synthesis [7].

Typically, the performance of the unknown feedback controller might be assessed
in the H∞-norm. Recall that the H∞-norm ‖G(θ, ·)‖∞ of a stable system is the
L2(jR) → L2(jR) operator norm of the channel w → z, where z(s) = G(θ, s)w(s).
An explicit expression is

‖G(θ, ·)‖∞ = sup
ω∈R∪{∞}

σ (G(θ, jω)) = sup
ω∈R∪{∞}

λ1

(
G(θ, jω)HG(θ, jω)

)1/2
,

where XH is the conjugate transpose of a matrix X. We are interested in that choice
of θ which minimizes the H∞-norm,

min
θ∈Rn

‖G(θ, ·)‖∞.(27)

We introduce the function

f(θ) = ‖G(θ, ·)‖2
∞,

which is then an infinite maximum of maximum eigenvalue functions

f(θ) = max
ω∈R∪{∞}

f(θ, ω), f(θ, ω) = λ1 (F (θ, ω)) ,
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where

F (θ, ω) = G(θ, jω)HG(θ, jω) ∈ S
m.

Program (27) is semi-infinite with two sources of nonsmoothness: the infinite maxi-
mum operator and the nonsmoothness of each maximum eigenvalue function f(·, ω).

Yet another difficulty arises in (27). Namely, given the fact that the H∞-norm is
defined only for stable transfer functions, the objective function f(θ) is defined only
on the set S of those parameters θ where G(θ, ·) is stable. In other words, program
(27) has the hidden constraint θ ∈ S. But S is an open set, because G(θ, ·) depends
continuously on θ, so θ ∈ S is not a constraint in the usual sense of mathematical
programming. The following known fact is therefore useful.

Lemma 8. Suppose (A(θ), B(θ), C(θ), D(θ)) is observable and controllable for
every θ ∈ S. Then ‖G(θ, ·)‖∞ → +∞ for θ ∈ S and θ → θ̄ ∈ ∂S. In other words,
f(θ) = ‖G(θ, ·)‖2

∞ behaves like a barrier function as θ approaches the boundary ∂S of
the hidden constraint S.

The following result is yet another key property for the analysis of f ; see, e.g.,
[11], [10, Lemma 1] for a proof.

Lemma 9. Suppose G(θ) is stable, i.e., θ ∈ S. Then the set Ω(θ) = {ω ∈
R ∪ {∞} : f(θ) = f(θ, ω)} of active frequencies is either finite or Ω(θ) = R ∪ {∞},
i.e., f(θ) = f(θ, ω) for every ω ∈ R ∪ {∞}.

We refer to Ω(θ) as the set of active frequencies at θ. A system where Ω(θ) =
R ∪ {∞} is called all-pass. In practical cases, iterates θ where G(θ, ·) is all-pass are
rarely encountered.

For the following we switch back to the more standard notation in optimization,
where the decision variable θ is denoted by x ∈ R

n. Let x be our current iterate
and consider the case where Ω(x) = {ω1, . . . , ωp} is finite. Any Ω with Ω(x) ⊂ Ω ⊂
R ∪ {∞} is called an extension of Ω(x). For a given extension Ω we consider the
function fΩ(y) = maxω∈Ω f(y, ω). If Ω is finite, then fΩ is a maximum eigenvalue
function, namely, fΩ(y) = λ1 (FΩ(y)), where FΩ(y) is block diagonal with diagonal
blocks F (y, ω), ω ∈ Ω arranged in any convenient order. We have fΩ ≤ f and
fΩ(x)(x) = fΩ(x) = f(x) for every extension Ω of Ω(x). The subdifferential of f at x
is determined by Ω(x) in as much as

∂f(x) = ∂fΩ(x) = ∂fΩ(x)(x).

Our goal is to extend the eigenvalue optimization algorithm to the case of the H∞-
norm. We use the following simple idea:

i. For a finite extension Ω of Ω(x) we know how to generate descent steps for
fΩ at x, because fΩ is a maximum eigenvalue function.

ii. Suppose yk+1 is a serious step for fΩ satisfying the acceptance test in step 4
of the algorithm. If Ω is large enough, fΩ is close to f , so that we may hope
that the acceptance test will also be satisfied for f .

This leads to a convergent algorithm for the H∞-norm. What is needed is an increas-
ing sequence Ω1 ⊂ Ω2 ⊂ · · · of finite sets whose union is dense in R∞. Then we use
the scheme of our algorithm to generate descent steps for fΩ�

, where Ω(x)∪Ω� ⊂ Ω�.
If the approximation of f by fΩ�

is not good enough, we replace Ω� by the larger
Ω�+1, where Ω(x) ∪ Ω�+1 ⊂ Ω�+1, etc. This approach is inspired by the theory of
consistent approximations of [53].
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Spectral bundle algorithm for program (27).

Parameters 0 < γ� < γ < 1
2 .

0. Initialize outer loop. Choose initial x such that f(x) < ∞.
1. Outer loop. If 0 ∈ ∂f(x) at current x stop, else goto inner loop.
2. Initialize inner loop. Let x1 = x and choose finite Ω1 containing Ω(x1).

Put inner loop counter � = 1.
3. Subprogram. At inner loop counter � and current Ω�, fΩ�

, φΩ�
(·;x), and

φk
Ω�

(·;x) use inner loop of the first algorithm (with counter k) to generate
trial step x� satisfying the test

f(x) − fΩ�
(x�)

f(x) − φk
Ω�

(x�;x)
≥ γ.

4. Reality check. Test whether
f(x) − f(x�)

f(x) − φk
Ω�

(x�;x)
≥ γ�.

5. Decision. If this is the case, let x+ = x� and go back to step 1. Otherwise
add new frequencies to the set Ω� to obtain Ω�+1 and go back to step 3.

Here φΩ�
(·;x) relates to fΩ�

as φ(·;x) relates to f in the algorithm of section 6, and,
similarly, φk

Ω�
(·;x) used here plays the role of φk(·;x) there.

Remarks. (i) Notice that our algorithm now has three iterative levels: the outer
loop generating the serious iterates x, x+, x++, . . . ; the inner loop with counter �,
which corresponds in fact to the outer loop in the first algorithm, now applied to the
function fΩ�

; and the innermost loop, which corresponds to the inner loop in the first
algorithm, and which has its own counter k.

(ii) Notice that Ω� could in principle be any increasing sequence of finite sets of
frequencies whose union is dense, but it is preferable to adapt this sequence to the
local situation at the current iterate x. Ideas of how Ω�(x) could be chosen at each
step are discussed in [4].

Theorem 10. Suppose (A(x), B(x), C(x), D(x)) is observable and controllable
for every x ∈ S. Let x1 be a starting point such that f(x1) < ∞ and such that
{x ∈ R

n : f(x) ≤ f(x1)} is bounded. Suppose the approximating sequence Ωk is such
that fΩk

→ f uniformly on bounded sets as k → ∞. Then every accumulation point
of the sequence of iterates xj generated by the above algorithm with starting point x1

is a critical point of f .

Proof. (i) Observe first that due to the barrier property of the objective, the
boundedness of the initial level set, and the fact that our method is of descent type in
the outer iterates, every accumulation point x̄ of the sequence of serious iterates xj is
necessarily inside the stability region S. This means criticality of x̄ is still described
by 0 ∈ ∂f(x̄). In other words, the hidden constraint x ∈ S can be disregarded in
what follows.

(ii) Let x be the current iterate of the outer loop and consider the inner loop with
function fΩ�

and its models φΩ�
and φk

Ω�
for a fixed set Ω�. Applying the lemmas of

section 7 to the maximum eigenvalue function fΩ�
shows finite termination of step 3

of the semi-infinite algorithm at a suitable x� (that is, after a finite number of steps
yk+1, where k is the counter of the innermost loop). Notice here that Lemmas 4 and 5
do not use compactness of the level sets of the objective, which is good news, because
the objective is fΩ�

, and we know nothing about compactness of the level sets of fΩ�
.

Only compactness of the level set of f is assumed in the statement. Instead, what
made that argument in section 7 work was the special structure (7) of the subgradients
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of the maximum eigenvalue function, and this applies to each fΩ�
.

(iii) The trial iterate x� found in step 3 corresponds in fact to the latest yk+1 of the
innermost loop in the terminology of section 7, and the test in step 3 is precisely the
acceptance test in the first algorithm. But being built on fΩ�

, x� does not necessarily
pass the reality check in step 4, so a restart with a larger Ω�+1 may be required. What
we have to prove, then, is that after a finite number of such updates Ω� → Ω�+1, the
x� = yk+1 will pass the test in step 4 and become the new outer iterate x+. This is
where we have to use the fact that fΩ�

gets closer to f as Ω� increases. More precisely,
exploiting again the special structure of the subgradients of the different λ1 involved,
and using that F ′(z, ω) is uniformly bounded for z in a bounded set and ω ∈ R∪{∞},
we see that the sequence of trial steps x� is bounded. Since fΩ�

→ f uniformly on
bounded sets, we conclude using γ� < γ that ultimately the test in step 3 is sharper
than the test in step 4. That proves finiteness of the loop in �.

(iv) Finally, relabeling the outer iterates x, x+, . . . as xj , we are back in the
situation analyzed in section 8. Using compactness of {x ∈ R

n : f(x) ≤ f(x1)},
we can use the same argument, now involving the parameter γ� from step 4 of the
algorithm. This completes the argument.

Remark. The theory of consistent approximations [53] allows us in principle to
apply this method in a fairly general context. However, a difficulty arises in step 4
of the algorithm, where the reality check requires computing values f(x�). This is
what makes the case of the H∞-norm special, because here we have an efficient way
to compute function values [11]. The same idea can be used to solve problems with
integral quadratic constraints (IQCs); see [7, 3].

10. Numerical tests. We present numerical tests with BMIs arising in feedback
controller synthesis. Consider a closed-loop system of the form (26), where A(K),
B(K), . . . depend on the feedback controller K to be designed. The bounded real
lemma [12] asserts that the closed-loop transfer channel w → z has H∞-norm bounded
by γ∞ if and only if there exists a Lyapunov matrix X � 0 such that

B̃(K,X, γ∞) =

⎡⎢⎣ A(K)�X + XA(K) XB(K) C(K)�

B(K)�X −γ∞I D(K)�

C(K) D(K) −γ∞I

⎤⎥⎦ ≺ 0.

Fixing a small threshold ε > 0, we consider the following nonlinear semidefinite pro-
gram:

minimize γ∞

subject to B̃(K,X, γ∞) � −εI,

εI −X � 0,

which may be solved as an eigenvalue optimization program with decision variable x =
(vec(K), svec(X), γ∞) if exact penalization is used. To this end, put B(K,X, γ∞) :=

diag[εI − X; B̃(K,X, γ∞)] and fix a penalty parameter α > 0 to solve the eigen-
value program minx λ1 (γ∞I + αB(K,X, γ∞)). An alternative approach is to fix the
performance level γ∞ and to solve the eigenvalue program

min
K,X

λ1 (B(K,X, γ∞))(28)

until a value < 0 is found. The gain γ∞ could then be updated a few times to improve
performance. This approach has been adopted in our numerical tests, while the exact
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penalty approach was used in [8]. Further testing of this approach for control problems
with IQCs is presented in [7].

10.1. Numerical implementation. We have performed six numerical experi-
ments using models known in the control literature (VTOL helicopter, chemical re-
actor, transport airplane, piezoelectric actuator, coupled springs model, and binary
distillation tower). This allows comparison with previous studies. We present both
static and reduced order controller designs. The state space matrices of these models
can be found in [35, 8], with the results of H2 and H∞ synthesis problems.

To solve the nonconvex eigenvalue optimization problem (28), we use our
MATLAB implementation of the spectral bundle algorithm. The tangent subproblem
to compute the trial step y+ requires minimizing a quadratic cost function subject to
an SDP constraint (an LMI (linear matrix inequality)). In order to solve the tangent
subproblem efficiently, our specSDP routine [8] was used.

10.1.1. Initialization of the algorithm. The parameter values of the spectral
bundle algorithm in section 6 have been set to γ = 0.01, γ̃ = 0.4, and Γ = 0.6. We
use tol = 10−5 as a tolerance parameter to stop the algorithm as soon as progress in
function values is minor, that is, f(x) − f(x+) < 10−5(|f(x)| + 1).

Initialization of the variables X and K in program (28) is a difficult task. In-
deed, the cost function (28) is nonconvex and the behavior of the algorithm could
dramatically change for a bad choice of X and K. For instance, simple initializa-
tions such as K = 0 and X = I are bound to fail. We have decided to start with
a closed-loop stabilizing K, which is easily obtained via minimization of the spectral
abscissa α(K) = max ReΛ(A(K)), where Λ(A(K)) is the spectrum of A(K); see [9].
Once the initial K0 is fixed in (28), minimizing the cost function with respect to X
alone is a convex program, which can be solved using standard LMI techniques. A
possible way to initialize X is therefore to choose X0 optimal with respect to K0.
Unfortunately, this often leads to numerical problems since X0 can be ill-conditioned
and have an exceedingly large norm. We have observed during our numerical testing
that the algorithm may crash because of the difference of magnitude between X and
K. To avoid these effects, we have sometimes used a scaled version of X0 to obtain
decision variables K0, X0 of the same order of magnitude.

Initializing γ∞ is easier, because the standard full order H∞ controller gives a
lower bound.

A delicate point is the initialization and choice of the number rk ∈ N defining the
dimension of the set Gk used to define the local model φk at each sweep k. As there
does not seem to be any theoretical way to set the value of rk, we have adjusted it
heuristically during the computations. Figure 1 compares, for the helicopter model,
static choices rk = const and displays the behavior of the algorithm for rk ∈ {1, 2, 3, 4}.
The ratio fi(xk)/f4(xk) is plotted for i = 1, . . . , 3, and k = 1, . . . , 100, where fi(xk) is
the value of the cost function for rk = i, and for the kth step xk of the algorithm. As
we can see in this plot, after some iterations, the algorithm behaves best for rk = 4,
indicating that larger rk should give better results. The results in [48] seem to indicate
that rk should be chosen in such a way that the gap between λrk and λrk+1 is as large
as possible, but our testing in [2, 4, 8] has not confirmed this. The situation is far from
clear, and dynamic choices of rk ought to be tested. The advantage of our present
approach motivated by [25] over the line motivated by [48] is that convergence of the
method no longer hinges on the choice of rk, respectively, rε.
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Fig. 1. Behavior of the cost function during iterations for different values of rk. This plot
shows the ratio fi(xk)/f4(xk), where fi(xk) is the value of the cost function at step xk for rk = i.

10.1.2. Nonsmooth optimality tests. To check whether the algorithm has
reached a critical point, respectively, a minimum x∗ = (X∗,K∗), we have implemented
two nonsmooth tests of optimality. The first one uses the ε-enlarged subdifferential of
[48] for the maximum eigenvalue function, δελ1(X), to compute the criticality measure

σε = dist (0, δεf(x∗)) ,

where f(x) = λ1 (B(K,X, γ∞)) = λ1(F (x)). This parameter is the minimum value of
the small size semidefinite program (computed using specSDP [8]):

minimize {||F ′(x∗)�G||2 : G ∈ δελ1 (B(X∗,K∗, γ∞))} ,

where δελ1(X) =
{
QεY Q�

ε : Y � 0,Tr(Y ) = 1
}
. Here Qε is an m× rε matrix whose

rε columns form an orthonormal basis of eigenvectors associated with those eigenvalues
λi(X) satisfying

i ∈ Iε := {i : λi(X) > λ1(X) − ε} .

The number rε := max{i : i ∈ Iε} is called the ε-multiplicity of λ1(X). In [48] it
is shown that ∂λ1(X) ⊂ δελ1(X) ⊂ ∂ελ1(X), so that ε could be roughly interpreted
in the following way: If 0 ∈ δεf(x∗) = F ′(x∗)�δελ1 (B(X∗,K∗, γ∞)), then it is not
possible to further decrease f locally around x∗ by more than ε. See [45, Lemma 2]
for more details on this optimality test. Notice that this test may indeed be used as
a stopping test in step 1 of the algorithm.

Our second optimality test is heuristic and is designed for a posteriori testing
of criticality. It uses random perturbations x of x∗ = (X∗,K∗) to see whether the
cost function value can be further decreased locally. Denoting by nv the number of
real optimization variables, we generate 100nv random perturbations around x∗ =
(X∗,K∗). The cost function values f(Xi,Ki) for each perturbation i = 1, . . . , 100nv
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are used to define

mf := min
i

f(Xi,Ki), Mf := max
i

f(Xi,Ki),

and

pf =
#{i : f(Xi,Ki) < f(X∗,K∗)}

100nv
.

Parameter pf (in percent) gives the proportion of perturbations for which the cost
function value is improved.

10.2. Numerical results for H∞-synthesis. Tables 1 and 2 present results
obtained with the spectral bundle algorithm applied to the H∞-synthesis problem.
Table 1 is for static controllers, and Table 2 is for dynamic controllers. Comparison
of performance γ∞ with results in the literature, for static controllers nk = 0, is given
in Table 3. Table 4 gives some measured CPU times for three models on the static
synthesis case. All numerical experiments have been performed on a Linux computer
with a 2Ghz processor.

10.2.1. VTOL helicopter. State space data for the VTOL helicopter model
are from [35, 8]; the model is described in [30]. The H∞ gain was fixed at γ∞ = 0.1542,
the optimization variables were initialized as K = [1, 1]�, and X = I. The algorithm
successfully solved the problem and obtained the H∞ controller

K∞ =

[
14.06432

239.5975

]
.

We decided to look for a dynamic controller of order nk = 2 with prescribed
closed-loop performance γ∞ = 0.133. The algorithm was initialized with a closed-
loop stabilizing K0 and X0 = I. The optimal Lyapunov matrix X with respect to the
given K0 was used neither in the static nor in the dynamic case, because it has a very
high norm and is likely to introduce numerical problems. The algorithm successfully
computed

AK =

[
1.672546 1.851477

1.849434 1.670218

]
, BK =

[
73.76900

73.68110

]
,

CK =

[
1.309171 1.308932

3.245753 3.241668

]
e-2, DK =

[
0.4300008

0.7486698

]
.

10.2.2. Chemical reactor. The chemical reactor model and numerical data
can be found in [29]. We fixed the performance level γ∞ = 1.1830 and initialized our
algorithm with a closed-loop stabilizing K0 together with the associated optimal X0

(scaled for numerical convenience). This kind of initialization was used for both static
and dynamic cases. The obtained static controller is

K∞ =

[
−3.791707 −9.704666

−7.166853 −35.27994

]
.
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We also computed a dynamic controller of order 2. For γ∞ = 1.1420, we obtained

AK =

[
−2.197969 −0.341903

−0.334860 2.205355

]
, BK =

[
0.4983757 1.096069

−6.452330 −13.82350

]
,

CK =

[
−0.1090918 1.556743

−0.2769249 3.964105

]
, DK =

[
−3.637238 −6.382226

−3.506708 −19.39329

]
.

The criticality measure was quite low in the static and the dynamic case, with
σε = 2.0041e-4, respectively, σε = 9.7570e-4. In the static case, for the purpose of
testing, we run the algorithm with a more severe stopping criterion to see if criticality
decreased further. The stopping criteria were

(29) f(x) − f(x+) < 10−5(|f(x)| + 1) and ||x− x+|| < 10−5(||x|| + 1).

With this rule the algorithm stops after 26448 iterations. The final point verifies
λ1(B̃) = −0.0079 and criticality measure σε = 4.2865e-06, with rε = 4 and ε =
1.3813e-5. At this numerical precision, we can consider that the algorithm has reached
a critical point.

10.2.3. Transport airplane. Model and state space data for the transport
airplane are from [22]. We used a closed-loop stabilizing K0 and the associated
optimal X0 for initialization. For γ∞ = 3.1770, our algorithm computed the static
controller

K∞ =
[

0.6340988 −0.5964908 −0.7923650 5.166775e− 2 1.055142
]
.

In the static case we have also made a test of the algorithm with the stopping criterion
(29). We have observed that the criticality of the final point of the algorithm has
decreased: σ0 = 2.4819e-5 after 241 iterations. Again, we can consider that the
algorithm has reached a critical point with regard to the chosen numerical precision.

We failed to find a dynamic controller of order 2 for the airplane model. We
computed a dynamic controller of order 1 with performance γ∞ = 2.860. The H∞
controller is

AK=
[
−0.4589498

]
,

BK=
[
−1.133331 1.441023 1.107071 −0.116483 −1.873279

]
e-2,

CK=
[
−7.108071e-3

]
,

DK=
[

1.740566 −0.8878559 −0.9477933 0.1000800 2.542508
]
.

10.2.4. Piezoelectric actuator. The model of the piezoelectric actuator can
be found in [13]. This study turned out to be one of the most difficult. As can be seen
in Tables 1 and 2, the spectral bundle algorithm at first failed to solve the control
problem both in the static and in the dynamic case. The algorithm converged to a
couple (X∗,K∗) with slightly positive objective value around 1.45e-5 for the dynamical
case, with the criticality parameter σε quite small in both cases, indicating optimality.
While it is perfectly possible that our algorithm, which is a local optimization method,
may converge to a local minimum with positive values, failing to solve the underlying
control problem, the present case turned out to be special. Namely, upon testing
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the obtained controller K∗, we realized that it is closed-loop stabilizing and therefore
solves the control problem. What happened is that the X∗ computed by our algorithm
was not suitable, as it fails to solve the Lyapunov inequality. Nonetheless, within the
prescribed numerical precision both stopping tests indicated a local minimum.

The static controller for γ∞ = 0.0578 reads

K∞ =
[
−0.3880673 −1.837152 −10.00377

]
e+7,

and the dynamical controller of order 2, for γ∞ = 0.030, is

AK=

[
−6.770630 −7.974432e-1

−7.973471e-1 −5.118056

]
e+6,

BK=

[
8.842279e-2 4.722429e-1 2.812368

3.574044e-2 1.910070e-1 1.136064

]
e+7,

CK=
[
−1.167814 −4.720797e-1

]
e+6,

DK=
[
−4.930334e-1 −1.977292 −1.480471e+1

]
e+7.

The described phenomenon indicates the numerical difficulty of synthesis problems
with joint variable x = (X,K), where important disparities between the numerical
ranges of the two variables K and X may occur. In particular, the Lyapunov matrix
X may be very ill-conditioned. The idea to keep K∗ and compute a new Lyapunov
variable X associated with K∗ using a convex technique is systematically used in D-K
iterations, where K and X variables are optimized alternatingly. The advantage of
this approach is that both subproblems are then convex and can be solved by standard
SDP solvers. However, intensive testing [27, 18] has shown that D-K techniques tend
to get stalled and should in general be avoided. We believe that joint minimization in
x = (X,K) is the method of choice, despite the indicated difficulties. This does not
exclude occasional restarts.

10.3. Coupled springs model. This is model CSE1 from [35] and consists of a
string of coupled springs with dash-pots and masses. Input forces act on both the left
and on the right ends of the spring system. The feedback controller has to stabilize
the positions of the masses. We focus on the synthesis of a dynamic controller of
order 4. To begin with, an initial closed-loop stabilizing controller was computed.
Then X0 was set to identity. An optimal controller was then synthesized for the
performance level γ∞ = 0.0235. The algorithm stopped at (K∗, X∗) with criticality
measure sufficiently low in comparison with the numerical precision: σε = 4.36e− 6,
with rε = 5 and ε = 3.64e− 5.

10.4. Distillation tower. Finally, to test the efficiency of the algorithm on
a larger model, we used the BDT2 model from COMPLeIB library [35], a binary
distillation tower with 82 states, 4 outputs, and 4 controller inputs. The complete
model is described in [56, section 12.4]. As can be seen in Table 1, the number of
optimization variables nv = 3419 is large in comparison with the previous examples.
It should be highlighted that approximatively 99.5% (3403) of these variables are
needed for the Lyapunov matrix X∗, but only 0.5% (16) are needed for controller K∗.
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Table 1

Results of static H∞-synthesis.

γ∞ α λn(X) λ1(B̃) λn+ny+nu (B̃)

Helicopter 0.1542 -0.1288 8.3236 -1.8146e-4 -1.8866e+5
Chemical reactor 1.1830 -1.8721 0.4327 -4.4606e-3 -2.4616e+3
Airplane 3.1770 -0.2486 1.1127e-3 -5.8368e-5 -44.4910
Piezo actuator 0.0578 -1.4202 7.0198e-10 8.2255e-3 -399.3432
BDT2 1.0722 -8.7144e-2 0.3223 -4.3202e-3 -6.2023e+2

#It. [n, ny , nu] nv rk σε rε ε pf mf Mf

600 [4,2,1] 12 4 1.15e-4 3 3.77e-7 0% 6.43e-4 1.95e-2
1800 [4,2,2] 14 4 2.01e-4 4 1.23e-5 0% 6.63e-3 9.28e-2
77 [9,1,5] 50 12 0.0114 4 3.24e-5 0% 4.00e-7 4.38e-5

1191 [5,1,3] 18 10 7.05e-3 5 7.94e-4 0% 570 2.29e+4
2934 [82,4,4] 3419 15 1.27e-3 6 6.20e-5 0.3% -1.02e-5 8.87e-4

Table 2

Results of dynamic H∞-synthesis.

γ∞ α λn(X) λ1(B̃) λn+ny+nu (B̃)

Helicopter 0.1334 -0.1583 2.7722e-3 -5.7903e-5 -39.5053
Chemical reactor 1.1420 -0.8245 0.2944 -3.2326e-3 -735.4831
Airplane 2.8600 -0.3161 6.2022e-4 -1.7815e-4 -150.1174
Piezo actuator 0.0300 -0.4796 -9.7169e-6 1.4503e-5 -16.1523
CSE1 0.0235 -2.1309e-1 8.2865e-1 -1.5574e-4 -6.6618e+2

#It. [n, nk, ny , nu] nv rk σε rε ε pf mf Mf

9334 [6,2,4,3] 33 10 5.14e-4 5 1.11e-5 0% 4.01e-2 5.20
1379 [6,2,4,4] 37 6 9.75e-4 3 2.94e-4 1.81% -1.81e-9 2.80e-8
1781 [10,1,2,6] 67 12 4.26e-2 3 4.50e-5 0% 2.11e-3 2.25e-2
8962 [6,2,3,5] 43 10 3.27e-2 5 1.45e-5 0% 1.15e-3 7.44e-2
2e4 [20,4,10,2] 384 6 4.34e-6 5 3.64e-5 0% 0.0025 6.51

Table 3

Comparison of γ∞ with results in the literature for static controllers nk = 0. The nonconvex
spectral bundle method (NSBM) is shown on left.

NSBM [34] [8]
Helicopter 0.1542 0.3455 0.157

Chemical reactor 1.1420 - 1.202
Airplane 3.1770 3.1774 2,220

Piezo actuator 0.0578 6.6256 3.055e-3

Table 4

Comparison of mean CPU times, in seconds, on three models of different sizes. Mean CPU
times are given for computation of f(x), computation of F ′(x), resolution of tangent program TP,
serious step, and null step. %Serious gives the percentage of serious steps with respect to the total
number of iterations.

Mean time f(x) F ′(x) TP Serious Null %Serious
Helicopter 3.23e-04 8.80e-04 3.75e-02 3.81e-02 3.89e-02 35.2
Airplane 5.11e-04 1.46e-03 8.64e-02 8.80e-02 9.09e-02 66.8
BDT2 1.08e-02 1.12 4.45 5.51 4.66 44.5



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

304 P. APKARIAN, D. NOLL, AND O. PROT

Synthesis of a static controller K∞ was obtained for the performance level γ∞ =
1.0722. An initial stabilizing controller K0 was computed with its corresponding
optimal Lyapunov matrix X0. The synthesized controller is

K∞ :=

⎡⎢⎢⎢⎣
5.748949e− 1 1.751953 9.954549e− 1 3.725248e− 1

−6.313297e− 1 1.133587 9.815346e− 1 2.909215

1.986992 1.789245 3.988785e− 1 2.468048

−1.061248e− 1 5.597463e− 1 3.635867 4.772583

⎤⎥⎥⎥⎦ .

Criticality was fairly low compared to the numerical precision: σε = 1.27e − 3 with
rε = 6 and ε = 6.20e − 5. However, the same numerical phenomenon as in the
piezoelectric actuator example was observed: (X∗,K∗) was not a stationary point,
and the cost could be further reduced by using a convex optimization technique to
compute a new Lyapunov matrix X with K∗ fixed.
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