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New Fuzzy Control Model and Dynamic Output
Feedback Parallel Distributed Compensation

Hoang Duong Tuan, Pierre Apkarian, Tatsuo Narikiyo, and Masaaki Kanota

Abstract—A new fuzzy modeling based on fuzzy linear
fractional transformations model is introduced. This new repre-
sentation is shown to be a flexible tool for handling complicated
nonlinear models. Particularly, the new fuzzy model provides an
efficient and tractable way to handle the output feedback parallel
distributed compensation problem. We demonstrate that this
problem can be given a linear matrix inequality characterization
and hence is immediately solvable through available semidefinite
programming codes. The capabilities of the new fuzzy modeling is
illustrated through numerical examples.

Index Terms—Fuzzy control, linear matrix inequality (LMI),
output feedback.

I. INTRODUCTION

ACONVENIENT and flexible tool for handling complex
nonlinear systems is the Tagaki–Sugeno (T–S) fuzzy

model [12], where the consequent parts are linear systems
connected by IF–THEN rules. Suppose that is the state vector
with dimension , is the control input with dimension ,
is the measurement output with dimension , and are the
disturbance and controlled output of the system with the same
dimension , and denotes the number of IF–THEN rules.
Then, each th plant rule has the form

and

(1)

Here are premise variables assumed independent of the con-
trol and are fuzzy sets. One of the main advantages of the
previous IF–THEN rule is the ease of its on-line implementation.
Conformably to this description, it is quite natural to seek a dy-
namic output feedback for (1) in the form

and

(2)

This specific form will be referred to as a parallel distributed
compensation (PDC) hereafter.
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However, in contrast to the case of the state feedback PDC
[13], [14], [17], there is no known satisfactory method for de-
signing the dynamic output feedback PDC (2). To see the dif-
ficulty of this design problem, let us first rewrite (1) and (2) in
the gain-scheduling form.

Denoting the grade of membership of in
and normalizing the weight of each
th IF–THEN rule by

(3)

(4)

the state-space representation of the T–S model is

(5)

where

(6)

Analogously, the PDC (2) can be rewritten as

(7)

with

(8)

Since in (5) is available on-line, the control problem de-
scribed by (5) and (7) belongs to the more general class of gain-
scheduling problems, an intensively studied subject in the past
decade (see, e.g., [1], [2], and the references therein). Specifi-
cally, gain-scheduling is a widely used method for the control of
nonlinear plants or a family of linear models. From (6) and (8),
the special feature of system (5) and control (7) is that both of
them are linear in the “gain scheduling” parameter . While
the system structure (6) is quite natural and widely studied in
gain-scheduling control theory, the control structure (8) is not
properly considered. Indeed, most of the results for gain sched-
uling control do not impose any special structure like (8) [2], [3],
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[16]. With the structure assumption (8), the problem becomes
very complex and to our knowledge, there is no effective solu-
tion method so far. This is in contrast with the state feedback
control where it has been shown in [17] that the linear struc-
ture in the scheduling parameter is quite natural and can be
assumed without loss of generality. Not surprisingly, a general
structure of fuzzy control has been assumed in [9] to make it
directly applicable from the general results of gain-scheduling
control. Meanwhile, it is also well known in gain scheduling
control as well as in fuzzy control that the simple linear structure
(6), (8) is crucial to ensure efficiency and ease of on-line imple-
mentation. This motivates us to introduce a new class of fuzzy
control models which not only includes model (1) as a particular
case but also better approximates the nonlinear models while re-
taining favorable implementation properties.

Another feature of the proposed fuzzy model is its flexibility.
As it is known, the T–S modeling works well for nonlinear sys-
tems with polynomial or other simple nonlinearities. When a
system involves also fractional terms, one has first to try to
transform it to a new simplified system involving only simpler
nonlinear terms in order to successfully apply the T–S mod-
eling [14]. Even when such transformations are possible, they
do not allow to address the performance problem of the original
system neither they facilitate the solution of the output feed-
back problem. In contrast, the proposed fuzzy modeling is free
of such difficulties.

The paper is organized as follows. The new fuzzy modeling is
introduced in Section II with some demonstration on its advan-
tages over the T–S modeling. Section III gives a new LMI for-
mulation for sub-optimal dynamic output feedback PDC.
The theoretical developments of the previous sections are illus-
trated by numerical examples in Section IV.

The notation of this paper is fairly standard. is the trans-
pose of the matrix . For symmetric matrices,
( , resp.) means is negative definite (posi-
tive–definite, respectively). In symmetric block matrices or long
matrix expressions, we use as an ellipsis for terms that are in-
duced by symmetry, e.g.,

II. FUZZY LFT MODEL

The new fuzzy LFT model discussed in this paper is described
as

(9)

and

(10)

Correspondingly, the dynamic output feedback PDC has the
same structure as that of (9) and (10)

(11)

and

(12)

Here, in (9)–(12), the variables have the same
meaning and the same dimension as those in (1). The new
variables have the same dimension . The controller
variables have the same dimensions as ,
respectively. Therefore, both feedback connection and
control feedback connection in the IF-THEN rule must be
of dimension .

As it is well known [20, p. 255], any nonlinear system
with rational

functions can be represented by (9) with

(13)

where the function has a very simple structure. System
(9), (13) is just

(14)

However, the representation (9), (13) is much more powerful for
studying nonlinear systems than the LFT representation (14).
Thus, our fuzzy LFT (9) and (10) can be interpreted as a fuzzi-
fication applied to the feedback part with simple structure (13)
instead of applying fuzzification to the whole system in (14) in
the T–S modeling. In fact, it is not so easy to apply fuzzy rules
to system (14) because of complicated fractional terms. In such
cases, with the T–S modeling, one has to try to use nonlinear
transformations and state feedback linearization to simplify the
system to a form that is more convenient for fuzzification. Un-
fortunately, such transformations do not exist in general and do
not bring any positive feature for the output feedback control
problem. The fuzzy LFT model (9) and (10) is free of these
drawbacks as mentioned previously. The fuzzy rules are applied
to the simpler object (13). Of course, the T–S model (1) can be
regarded as a particular case of the fuzzy LFT (9) and (10) since
the former can be easily rewritten in the form of the later.

We now demonstrate clear advantage of the fuzzy LFT
modeling in comparison with the T–S modeling of the non-
linear benchmark model [5] of rotational-translational actuator
(RTAC). The normalized RTAC model is

(15)

where
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The state-space representation of (15) is thus

(16)

with the redefinition
.

Clearly, because of many fractional terms involved in (16),
the corresponding T–S modeling may lead to a very loose
approximation. To overcome this difficulty, a known nonlinear
transformations of variables [19] with the state feedback
control linearization has been applied in [14] to transform (16)
to a new simplified system involving only one nonlinear term

which is thus convenient for the T–S modeling. Clearly,
with such an approach one can hardly handle the performance
problem as well as the output feedback problem.

Now, it is immediate to verify (see the Appendix) that (16)
can be rewritten as

(17)

(18)

with , , , , , , , , and defined by
(52) and (56) and

(19)

Thus it remains a simple task to apply fuzzy rules to the quite
simple nonlinear terms in (18). The performance and regulator
problems can then be directly addressed (see Section IV for
more details). Also, noticing that the term connecting to

in the LFT representation of a nonlinear system has a simple
structure, one needs much fewer IF–THEN rules to handle their
connection in comparison with the T–S modeling.

III. CONTROL

The optimal control problem consists in finding a con-
troller (11) and (12) for (9) and (10) such that

(20)

Fig. 1. Online implementation of fuzzy LFT system and PDC controller.

By using the normalized membership functions defined
by (3) and (4), we can write our model (9) and (10) and output
feedback PDC (11) and (12) as (9), (11) with

(21)

(22)

see Fig. 1.
Before going further, let us mention that with the expres-

sions (21), (22) in mind, the fuzzy system (9) and (10) and
the control (11) and (12) are nothing else than an LFT gain-
scheduling system and an LFT gain-scheduling control with
the membership functions playing the role of the gain-
scheduling parameters. However, it should be emphasized again
that most existing techniques handling such LFT gain sched-
uling models (see, e.g., [1], [6], and the references therein) such
as the linearization method in [11] or the Projection Lemma
based technique in [1] and [6], are restricted to the norm con-
straint for the matrix in (21) but are un-
able to handle the polytopic constraints such as (21) and (22).
Also, as mentioned earlier, the PDC structure of control (22)
cannot be properly addressed. The approach below is based on
the new linearizing technique recently developed in [4] for the
discrete-time systems.

Now, denoting , ,

, we can write down the closed-loop system as

(23)
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where

(24)

with the definition

To handle the nonlinear relationship between and , we
use the following symmetric scalings , :

(25)

Clearly, for such scalings, one has

i.e.,

(26)

for all satisfying (23).
By virtue of (26), if there is a matrix

(27)

such that

(28)

then

(29)

so (20) holds true for all satisfying (23).
Rewriting the left-hand side of (28) as a quadratic functional

in and by a Schur complement argument the fol-
lowing equivalent inequality is obtained:

(30)
Meanwhile, it is easily seen that (25) is equivalent to

(31)

In accordance with the partition of and in (24), we in-
troduce the following partitions of , , and their inverses

, , in the form

where by the strict nature of the LMI constraints involved and a
perturbation argument, there is no loss of generality in assuming
that , , , , and are invertible.

Because of the trivial indentities , ,
, one may note that

(32)

Therefore, with the notations

it is immediate to check that

(33)

These last equalities enable us to see the following.
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• Equation (27), i.e., if and only (the
congruence trasformation of (27) by ):

(34)

• The congruence transformation

applied to (31) in conjunction with the linearizing changes
of variable

(35)

makes (31) equivalent to the LMI

(36)
Here, the following consequence of (33) is also used:

Furthermore, for the following linearizing changes of variable
[4]

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

by lengthy but straightforward manipulations, it can be checked
that

(46)

So, perform the congruence transformation

in (30) to get the equivalent inequality shown in (47) at the
bottom of the page, which, by (46), is nothing else as the fol-
lowing LMI:

(48)

with (49), as shown at the bottom of the next page, holding true.
In summary, with the new definition

we can reformulate our control problem as

(50)

Theorem 3.1: The suboptimal dynamic output feedback
PDC (11) and (12) for the -control problem (20) subject

(47)
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to the LFT fuzzy system (9) and (10) can be solved from LMI
optimization problem (50). The state-space data of the PDC
(11) and (12) are readily obtained from solutions of problem
(50) as follows.

• Using (32), compute an SVD factorization of ,
, to get .

• Compute matrix data of (11) by sequentially reverting the
changes of variable as specified in (37)–(45).

• Deduce of the IF–THEN rule (12) as

(51)

Remarks: Although only the result with control
problem is presented here, it is clear that other problems such
as stabilization, control can be treated in a similar manner.
However, for the multiobjective like control one, it is
possible to use different Lyapunov variables , and scaling
variables , , , for checking each performance to reduce
conservatism. However, it may lead to LMIs with additional
nonlinear scalar variable which requires additional line search
(see [18] for related issues). An alternative approach is to
transform the continuous system to a discrete-time one by a
bilinear transformation and then applying the result of [4]. We
refer the interested reader to [10].

IV. NUMERICAL EXAMPLES

In this section, we demonstrate how nonlinear systems can be
represented by our proposed fuzzy LFT models and thus can be
effectively handled by LFT PDC (11) and (12).

A. RTAC Control

Return back to the RTAC model (15) where it is assumed for
simplicity that is available for measurement. As in [5]
we take the regulated output involving the tracking performance
of the translational and angular positions and control:

Fig. 2. Tracking performance in the absence of disturbance.

Fig. 3. Tracking performance with the disturbance w = 1:8 sin �t.

(49)
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Under the typical assumption like ,
the data of system (9) for the RTAC model (15) is (see the
Appendix)

(52)

with the constants defined by (56).
Then with and defined by (57), we can rewrite

(18) as (21) with and the normalized membership functions
; see their definition (3) defined by

and accordingly, the online implementation of the PDC is given
by (22).

Fig. 4. Control performance in the absence of disturbance (solid) and with
disturbance w = 1:8 sin �t(dot).

Fig. 5. Chaotic motion without control.

Fig. 6. Stable motion with control.

Under the condition and ,
the simulation given by Figs. 2–4 clearly show that our PDC sta-
bilizes the system well. Surprisingly, with our PDC, all system
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states look like “low frequency signals” which is in contrast with
the high frequency behavior of the results in in [14], [17]. Per-
haps, the high frequency observed in [14], [17] is caused by the
nonlinear state transformation. Also, our PDC is much lower
gain than that of [14] and [17] because the control performance
is taken into account in our problem formulation. Because of
complex nonlinear relationship due to nonlinear transformation,
it is hard to explicate the control gain in [14], [17].

B. Chaos Control

The Duffing forced-oscillation equation

(53)

with control input and measured output can be written as
(9) with

(54)

and

(55)

Note that without the control input, the system behavior is
chaotic (see Fig. 5) and , thus we can rewrite
(55) as (10) with

The simulation with our PDC in the form (11) and (12) is given
in Fig. 6, which clearly shows that PDC does a good job to
stabilize the oscillation. Similar stability and performances have
been also shown in [9]using another form of fuzzy controllers.

APPENDIX

LFT DERIVATION FOR RTAC MODEL

With the definitions

(56)

and

(57)

we can write

Therefore, (16) can be rewritten as

Set

(58)

Then

(59)

Using (58) and (59), it is easily seen that that (16) is represented
by (17) with data given by (52).
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